Использование дифференциалов (не частных производных) для доказательства того, что d𝜃 / dx = -sin (𝜃) / r [дубликат]
Я пытаюсь доказать части каждого компонента обратной матрицы в прилагаемом изображении. Я пробовал использовать дифференциалы, а затем решать другие компоненты. (Я бы хотел решить это так). Например, пытаясь решить$\frac{d\theta}{dx}$ (в нижнем левом углу обратной матрицы [прилагается ниже]) $$x = r cos(\theta)$$ -> $$dx = cos(\theta)dr - rsin(\theta)d\theta$$Затем, заметив, что мы держим $r = constant$, таким образом $dr = 0$. я понимаю$\frac{d\theta}{dx} = \frac{- 1}{r sin(\theta)}$, что близко. Я поместил это в частичный калькулятор и сделал$\theta$ функция от x и r, $\theta = cos^{-1}\left(\frac{x}{r}\right) = \cos^{-1}\left(\frac{x}{\sqrt{x^2 +y^2}}\right)$. Принимая$\frac{\partial \theta}{\partial x}$Я получаю правильный ответ, потому что r является функцией x и y. Если я использую$cos^{-1}\left(\frac{x}{r}\right)$ и возьмите частичное, я получаю то, что я сказал выше ($\frac{d\theta}{dx} = \frac{- 1}{r sin(\theta)}$). Также попробовал заменить dr в$dx = cos(\theta)dr - rsin(\theta)d\theta$ используя $r^2=x^2+y^2$ заменив dr на $rdr = xdx + ydy$где я считал dy постоянным. Что дало мне неправильный ответ. Я бы хотел улучшить свое логическое мышление, поэтому любые советы по поводу того, что я сделал, тоже были бы замечательными. Спасибо!
Резюме: я пытаюсь доказать, используя дифференциалы (не частичные), что $\frac{d\theta}{dx} = \frac{-sin(\theta)}{r}$
Ответы
Проблема в том, что нельзя просто написать $\frac{d\theta}{dx}$. В термодинамике есть действительно полезные и важные обозначения. Они пишут частные производные с нижним индексом, чтобы указать, какие переменные остаются неизменными. Так, например, если у нас есть$z=f(x,y)$ и мы хотим найти производную от $f$ относительно $x$, фиксация $y$, мы пишем $$\left(\frac{\partial f}{\partial x}\right)_y \quad\text{or}\quad \left(\frac{\partial z}{\partial x}\right)_y.$$ Это важно, потому что у нас может быть много переменных, и важно знать, какие переменные фиксированы.
В вашем примере мы можем думать о $(x,y)$ как функции $(r,\theta)$. Тогда, если мы напишем$\partial x/\partial\theta$, это обычно означает $\left(\frac{\partial x}{\partial\theta}\right)_r$. Когда вы исправляете$r$, то становится истинным (потому что мы, по сути, проводим одномерное исчисление), что $$\left(\frac{\partial\theta}{\partial x}\right)_r = \frac 1{\left(\frac{\partial x}{\partial\theta}\right)_r}.$$ Однако вы сбиваете с толку, пытаясь вычислить $\left(\frac{\partial\theta}{\partial x}\right)_y$, а это два совершенно разных зверя. Вы действительно должны быть осторожны с отслеживанием независимых переменных. Если вы их измените, появится больше правил цепочки.
Повторюсь, вы пытаетесь сравнить \begin{align*} \left(\frac{\partial\theta}{\partial x}\right)_r &= -\frac1{r\sin\theta} = -\frac1y \quad\text{and} \\ \left(\frac{\partial\theta}{\partial x}\right)_y &= -\frac{y}{x^2+y^2} = -\frac{\sin\theta}r. \end{align*}
Кстати, будьте осторожны. В общем, у нас нет$\frac{\partial x}{\partial\theta} = \frac1{\frac{\partial\theta}{\partial x}}$. Действительно, поскольку$x=r\cos\theta$, у нас есть $\partial x/\partial\theta = -r\sin\theta$ (который $-y$). С другой стороны, поскольку$\theta =\arctan(y/x)$ (по крайней мере, для $-\pi/2<\theta<\pi/2$), у нас есть $\partial\theta/\partial x = -\frac y{x^2+y^2}$, что сильно отличается от $-y$. Это ваш$-\sin\theta/r$, конечно. Правильное соотношение исходит из полных производных матриц (называемых якобианом), которые являются обратными$2\times 2$ матрицы.
Вы можете сделать все это правильно с помощью дифференциалов (фактически, дифференциальных форм), но вы все равно должны отслеживать, кто такие независимые переменные. И вы действительно должны перестать писать такие вещи, как$d\theta/dx$ пока не $\theta$действительно является функцией только одной переменной$x$. Чтобы получить свою первую формулу, вам нужно будет написать$d\theta$ с точки зрения всего $dx$ а также $dr$; чтобы получить второй, вам придется написать$d\theta$ с точки зрения обычного $dx$ а также $dy$. Это просто вопрос о том, что такое независимая переменная s .