Nützlichkeit der Differentialgeometrie

Aug 17 2020

Ich bin vor kurzem auf diese Bücher gestoßen:

  • Differentialgeometrie und Lügengruppen: Eine rechnerische Perspektive
  • Differentialgeometrie und Lügengruppen: Ein zweiter Kurs

Ihre Themen interessieren mich sehr, da mir Topologie/Geometrie/Analysis sehr viel Spaß macht, ich aber nicht geplant hatte, sie zu verfolgen, da ich auch in einem Bereich mit sehr konkreten Anwendungen arbeiten möchte. Allerdings bin ich skeptisch. An einem Punkt dachte ich, die topologische Datenanalyse (TDA) sei die perfekte Verbindung meiner Interessen, aber ich habe nur sehr wenige Beweise dafür gefunden, dass dieses Gebiet tatsächlich in der Informatik verwendet wird, geschweige denn in industriellen oder anderweitig „praktischeren“ Umgebungen. Es scheint, als ob TDA Mathematikern das Gefühl gibt, relevanter für die Welt der Datenwissenschaften zu sein, aber ich bin nicht davon überzeugt, dass sie es so machen (Sie können mir gerne widersprechen, wenn Sie denken, dass ich in diesem Punkt falsch liege, aber beachten Sie, dass ich eine konkrete möchte Anwendungsfall, kein abstraktes Argument über seine Relevanz). Ich habe ähnliche Geschichten über die Codierungstheorie, bestimmte Aspekte der Mengenlehre usw. Sie mögen theoretisch relevant sein, aber gibt es Situationen, in denen man diese Bereiche im Prozess der Softwareentwicklung konsultieren muss? Ich kenne keine.

Nun meine Frage: Gibt es ein praktisches Gebiet der Informatik, das fortgeschrittenen Gebrauch von der Differentialgeometrie macht? Als mögliche Anwendungsgebiete kommen medizinische Bildgebung, andere Bildgebung, Computergrafik, virtuelle Realität und einige andere Bereiche in Betracht. Nach meiner (zugegebenermaßen begrenzten) Erfahrung scheinen diese Bereiche jedoch grundlegende 3D-Geometrie, numerische lineare Algebra und manchmal die numerische Analyse von PDEs zu verwenden. Das sind alles sehr schöne Themen, aber sie erfordern nichts so Abstraktes wie die Differentialgeometrie.

Danke im Voraus.

Antworten

pedroth Dec 17 2020 at 19:57

Anwendung der Differentialgeometrie in der Informatik sehe ich vor allem in folgenden angewandten Teilgebieten:

  • Computergrafik / Geometrieverarbeitung
  • Maschinelles Lernen / Signalverarbeitung

Für Computergrafik-/Geometrieverarbeitung empfehlen wir die Suche nach:

  • Diskreter Differenzialgeometriekurs von Keenan Crane
  • Diskrete Differentialgeometrie für CS-Wiedergabeliste
  • Zusammenstellung von Artikeln zur diskreten Differentialgeometrie

Für maschinelles Lernen / Signalverarbeitung empfehlen wir die Suche nach:

  • Vielfältiges Lernen
  • Informationsgeometrie
  • Nichtlineare Signalverarbeitung
  • Geometrisches Deep Learning

Sehen Sie sich auch diese Antwort in Math Exchange an, und diese Konferenz Differential Geometry meets Deep Learning

Übrigens ist die Funktionale Differentialgeometrie ein großartiges Buch.

1 Bhishmaraj Aug 21 2020 at 00:13

Wenn Sie Struktur und Interpretation von Computerprogrammen interessant fanden, könnte Ihnen Functional Differential Geometry gefallen (von denselben Autoren).

Die Differentialgeometrie ist täuschend einfach. Es ist überraschend einfach, die richtige Antwort mit unklarer und informeller Symbolmanipulation zu erhalten. Um dieses Problem anzugehen, verwenden wir Computerprogramme, um ein genaues Verständnis der Berechnungen in der Differentialgeometrie zu vermitteln. Das Ausdrücken der Methoden der Differentialgeometrie in einer Computersprache zwingt sie dazu, eindeutig und rechnerisch effektiv zu sein. Die Aufgabe, eine Methode als computerausführbares Programm zu formulieren und dieses Programm zu debuggen, ist eine mächtige Übung im Lernprozess. Außerdem wird eine mathematische Idee, sobald sie prozedural formalisiert ist, zu einem Werkzeug, das direkt zur Berechnung von Ergebnissen verwendet werden kann.

Aus Sussman, Wisdom: Functional Differential Geometry

cagcoach Aug 17 2020 at 04:03

Heutzutage wird jedes Feld, das den Namen "Differential" enthält, irgendwie in neuronalen Netzen angewendet. Für die Differentialgeometrie können Sie zum Beispiel an Differential Rendering in der Computergrafik denken.

Momentan arbeite ich an der Arbeit „A Differential Theory of Radiative Transfer“ von Zhang et al.