छोटा क्यों करता है? $p$-यात्रा अशक्तता के साथ असंगति का संकेत देती है?

Aug 18 2020

आइए, एक सरल उदाहरण के रूप में, जनसंख्या के अर्थ पर दो-पूंछ वाले एक-नमूना परिकल्पना परीक्षण करें। मान लीजिए हमने एक निर्धारित किया है$\alpha$एक प्राथमिकताओं को हल करें।

लश्कर $X_1, \dots, X_n \overset{\text{iid}}{\sim}\mathcal{N}(\mu, \sigma^2)$। इस सेटिंग में, एक मान दिया गया$\mu_0$, हमारे पास अशक्त और वैकल्पिक परिकल्पनाएं हैं $H_0: \mu = \mu_0$ तथा $H_1: \mu \neq \mu_0$

लश्कर $\bar{X}_n$ का नमूना हो $X_1, \dots, X_n$ तथा $S^2$ निष्पक्ष अनुमान लगाने वाला हो $\sigma^2$, साथ से $\bar{x}_n$ तथा $s^2$ देखे गए मूल्य हैं।

हम जानते हैं कि $$\dfrac{\bar{X}_n - \mu}{\sqrt{S^2/n}} \sim t_{n-1}$$ यानी, ए $t$के साथ -distribution $n-1$स्वतंत्रता की कोटियां। के अंतर्गत$H_0$, हमारे पास वह है $$\dfrac{\bar{X}_n - \mu_0}{\sqrt{S^2/n}} \sim t_{n-1}\text{.}$$ फिर हम एक गणना करते हैं $p$-दाल $$p = \mathbb{P}\left(|T| \geq \dfrac{\bar{x}_n - \mu_0}{\sqrt{s^2/n}} \right)$$ कहां है $T \sim t_{n-1}$ और अगर $p < \alpha$, हम अस्वीकार करते हैं $H_0$ और राज्य के लिए सबूत है $H_1$

अब, मैंने इस प्रक्रिया को वर्षों तक किया है, और मैं यह पूछने के लिए थोड़ा शर्मिंदा हूं, यह देखते हुए कि मैं एक एमएस डिग्री रखता हूं: लेकिन वास्तव में ऐसा नहीं होता है$p < \alpha$ के साथ असंगति का संकेत दें $H_0$ और के लिए सबूत $H_1$? गणितीय रूप से, यह सब उस दिन के अंत में है जब आपके यादृच्छिक चर की संभावना है$T$नमूने द्वारा प्राप्त की गई उपज की तुलना में कम से कम अति (पूर्ण मूल्य में) मूल्य पर लेता है। लेकिन मैं यह देखने में असफल रहा कि ऐसा क्यों है$p < \alpha$ संकेत करता है कि हमारे पास अस्वीकार करने के लिए सबूत हैं $H_0$

शायद यह कैसला और बर्जर में शामिल किया गया है और मैं विवरण भूल गया हूं।

जवाब

8 Dave Aug 18 2020 at 14:55

चलो एक सादृश्य का उपयोग करें।

आप इस बात को लेकर उलझन में हैं कि यह किस दिन है। इससे भी बदतर, आप महीने भी नहीं जानते हैं, हालांकि आपके पास एक कूबड़ है कि यह गर्मी हो सकती है, लेकिन आप चाहते हैं कि यह सर्दियों में हो ($H_0: \text{summer}$ तथा $H_a: \text{winter}$) है। आप अपने फोन पर कैलेंडर पर भरोसा नहीं करते हैं, लेकिन आप मौसम ऐप पर भरोसा करते हैं, इसलिए आप इसे तापमान के हिसाब से देखते हैं।

आप देखते हैं कि मौसम ऐप तापमान की रिपोर्ट करता है $-24^{\circ} C$

आप जानते हैं कि गर्मियों के दौरान ठंड या ठंड बहुत कम होती है, इसलिए आप इस विचार को अस्वीकार करते हैं कि यह गर्मियों के समापन के पक्ष में है।

इस सादृश्य में, महत्वपूर्ण मूल्य पर्याप्त रूप से छोटा है $p <\alpha$ वह तापमान है जिस पर आप अपने कूबड़ पर संदेह करेंगे कि यह गर्मी है जिसे आप समाप्त करेंगे, "नहीं, सर्दियों का समय!"

2 SextusEmpiricus Aug 18 2020 at 19:03

मैं हमेशा पी-मान को एक विसंगति के सूचक के रूप में देखता हूं : एक असंभावित चरम अवलोकन (कितना संभव नहीं है, जो कि पी-मूल्य द्वारा इंगित किया गया है)।

अशक्त सिद्धांत और अवलोकन के बीच सभी विसंगतियां शून्य के साथ असंगति का एक मजबूत संकेतक नहीं हैं। शोर या माप की अन्य विविधताओं के कारण, कुछ विसंगति की उम्मीद की जा सकती है और यह कुछ सीमा के भीतर अवलोकन प्राप्त करने की संभावना है।

हालांकि, संभावित सीमा के बाहर बड़ी विसंगतियां अप्रत्याशित हैं। इस तरह की विसंगतियां एक संकेतक हैं कि अशक्त सिद्धांत गलत हो सकता है। अधिक अप्रत्याशित विसंगति (कम पी-मूल्य) मजबूत यह इंगित करता है कि अशक्त सिद्धांत टिप्पणियों से असंगत है।

सिद्धांत का परीक्षण करते समय, सिद्धांत और अवलोकन के बीच एक विसंगति को देखकर, हम आम तौर पर केवल अत्यधिक असंभावित विसंगतियों में रुचि रखते हैं।

1 IgorF. Aug 18 2020 at 16:00

सच पूछिये तो, किसी भी पी -value है कुछ के बारे में सबूत$H_0$ बनाम $H_1$सवाल। यह आमतौर पर निर्णय लेने के लिए उबलता है: क्या आपको यह मानते हुए कार्य (या अपने भविष्य के कार्यों की योजना) करना चाहिए$H_0$ सच है, या आपको पकड़ना चाहिए $H_1$सच के लिए? एक अनुभवजन्य क्षेत्र में आप कभी भी पूर्ण निश्चितता के साथ नहीं जान सकते हैं, लेकिन फिर भी, आपको किसी तरह निर्णय लेना होगा।

अब, यह एक अलग सवाल है कि क्या संभावना अपने आप में उस निर्णय लेने के लिए सही मानदंड है, लेकिन हम मान लेते हैं कि यह है। फिर, सेटिंग करके$\alpha$कुछ मूल्य (आमतौर पर 0.05) पर आप मूल रूप से एक निर्णय सीमा स्थापित कर रहे हैं: यदि p -value इसके नीचे है, तो आप कार्य करने का निर्णय लेते हैं यदि$H_1$सच था, क्योंकि इस तरह के चरम मूल्य को प्राप्त करने के लिए यह पर्याप्त रूप से असंभव है (हालांकि अभी भी संभव है)$T$ अगर $H_0$ सही थे।

उदाहरण के लिए:

मान लीजिए आपने 1 k का 1 मिलियन ऑर्डर किया है$\Omega$इलेक्ट्रॉनिक घटकों के निर्माता से प्रतिरोधक। विनिर्माण प्रक्रिया के कारण, कोई भी रोकनेवाला ठीक 1 k नहीं है$\Omega$, इसलिए सही प्रतिरोध उस मूल्य के आसपास कुछ यादृच्छिक वितरण है। आपके पास प्रत्येक रोकनेवाला की जांच करने के लिए संसाधन नहीं हैं, लेकिन आप एक नमूना ले सकते हैं, उस पर प्रतिरोध को माप सकते हैं और आंकड़े कर सकते हैं।

यदि आपको पर्याप्त मात्रा में पी- पाव मिलता है,$p \gt \alpha$, तुम कह सकते हो:

यह मानते हुए कि जनसंख्या में वास्तविक प्रतिरोध 1 है$k\Omega$, यह एक यादृच्छिक नमूने को आकर्षित करने के लिए उचित रूप से संभावित है जिसका औसत प्रतिरोध कम से कम उस आदर्श मूल्य से मापा जाता है। मैं शिपमेंट को स्वीकार करूंगा और अपने उत्पाद में प्रतिरोधों का निर्माण करूंगा।

यह अस्वीकार करने में विफल है $H_0$। दूसरी ओर, यदि आपका p -value आपके नीचे है$\alpha$, आपका तर्क निम्नलिखित है:

यह मानते हुए कि जनसंख्या में वास्तविक प्रतिरोध 1 है$k\Omega$, यह एक यादृच्छिक नमूना लेने के लिए बहुत असंभव है जिसका औसत प्रतिरोध कम से कम उस आदर्श मूल्य से मापा जाता है। इसलिए, सही प्रतिरोध की संभावना 1 नहीं है$k\Omega$। मैं शिपमेंट को अस्वीकार कर दूंगा, निर्माता पर मुकदमा करूंगा, और अधिक विश्वसनीय एक या जो भी खोजूंगा, लेकिन मैं अपने उत्पाद में इन प्रतिरोधों का उपयोग नहीं करूंगा, क्योंकि यह गलत तरीके से आयाम वाले घटकों के साथ ठीक से काम नहीं करने वाला है।

यह अस्वीकार कर रहा है $H_0$ पक्ष में $H_1$