統計-数式

以下は、Tutorialspoint統計チュートリアルで使用される統計式のリストです。各数式は、数式の使用方法を説明するWebページにリンクされています。

A

  • Adjusted R-Squared -$ {R_ {adj} ^ 2 = 1-[\ frac {(1-R ^ 2)(n-1)} {nk-1}]} $

  • Arithmetic Mean -$ \ bar {x} = \ frac {_ {\ sum {x}}} {N} $

  • Arithmetic Median -中央値= $ \ frac {N + 1} {2})^ {th} \ item $の値

  • Arithmetic Range -$ {Coefficient \ of \ Range = \ frac {LS} {L + S}} $

B

  • Best Point Estimation -$ {MLE = \ frac {S} {T}} $

  • Binomial Distribution -$ {P(Xx)} = ^ {n} {C_x} {Q ^ {nx}}。{p ^ x} $

C

  • Chebyshev's Theorem -$ {1- \ frac {1} {k ^ 2}} $

  • Circular Permutation -$ {P_n =(n-1)!} $

  • Cohen's kappa coefficient -$ {k = \ frac {p_0 --p_e} {1-p_e} = 1- \ frac {1-p_o} {1-p_e}} $

  • Combination -$ {C(n、r)= \ frac {n!} {r!(nr)!}} $

  • Combination with replacement -$ {^ nC_r = \ frac {(n + r-1)!} {r!(n-1)!}} $

  • Continuous Uniform Distribution --f(x)= $ \ begin {cases} 1 /(ba)、&\ text {when $ a \ le x \ le b $} \\ 0、&\ text {when $ x \ lt a $または$ x \ gt b $} \ end {cases} $

  • Coefficient of Variation -$ {CV = \ frac {\ sigma} {X} \ times 100} $

  • Correlation Co-efficient -$ {r = \ frac {N \ sum xy-(\ sum x)(\ sum y)} {\ sqrt {[N \ sum x ^ 2-(\ sum x)^ 2] [N \ sum y ^ 2-(\ sum y)^ 2]}}} $

  • Cumulative Poisson Distribution -$ {F(x、\ lambda)= \ sum_ {k = 0} ^ x \ frac {e ^ {-\ lambda} \ lambda ^ x} {k!}} $

D

  • Deciles Statistics-$ {D_i = l + \ frac {h} {f}(\ frac {iN} {10} --c); i = 1,2,3 ...、9} $

  • Deciles Statistics-$ {D_i = l + \ frac {h} {f}(\ frac {iN} {10} --c); i = 1,2,3 ...、9} $

F

  • Factorial-$ {n!= 1 \ times 2 \ times 3 ... \ times n} $

G

  • Geometric Mean -$ GM = \ sqrt [n] {x_1x_2x_3 ... x_n} $

  • Geometric Probability Distribution -$ {P(X = x)= p \ times q ^ {x-1}} $

  • Grand Mean -$ {X_ {GM} = \ frac {\ sum x} {N}} $

H

  • Harmonic Mean -$ HM = \ frac {W} {\ sum(\ frac {W} {X})} $

  • Harmonic Mean -$ HM = \ frac {W} {\ sum(\ frac {W} {X})} $

  • Hypergeometric Distribution -$ {h(x; N、n、K)= \ frac {[C(k、x)] [C(Nk、nx)]} {C(N、n)}} $

  • Interval Estimation -$ {\ mu = \ bar x \ pm Z _ {\ frac {\ alpha} {2}} \ frac {\ sigma} {\ sqrt n}} $

L

  • Logistic Regression -$ {\ pi(x)= \ frac {e ^ {\ alpha + \ beta x}} {1 + e ^ {\ alpha + \ beta x}}} $

M

  • Mean Deviation -$ {MD} = \ frac {1} {N} \ sum {| XA |} = \ frac {\ sum {| D |}} {N} $

  • Mean Difference -$ {Mean \ Difference = \ frac {\ sum x_1} {n}-\ frac {\ sum x_2} {n}} $

  • Multinomial Distribution -$ {P_r = \ frac {n!} {(n_1!)(n_2!)...(n_x!)} {P_1} ^ {n_1} {P_2} ^ {n_2} ... {P_x} ^ { n_x}} $

N

  • Negative Binomial Distribution -$ {f(x)= P(X = x)=(x-1r-1)(1-p)x-rpr} $

  • Normal Distribution -$ {y = \ frac {1} {\ sqrt {2 \ pi}} e ^ {\ frac {-(x- \ mu)^ 2} {2 \ sigma}}} $

O

  • One Proportion Z Test -$ {z = \ frac {\ hat p -p_o} {\ sqrt {\ frac {p_o(1-p_o)} {n}}}} $

P

  • Permutation -$ {{^ nP_r = \ frac {n!} {(nr)!}} $

  • Permutation with Replacement -$ {^ nP_r = n ^ r} $

  • Poisson Distribution -$ {P(Xx)} = {e ^ {-m}}。\ frac {m ^ x} {x!} $

  • probability -$ {P(A)= \ frac {Number \ of \ favourable \ Cases} {Total \ number \ of \ equally \おそらく\ cases} = \ frac {m} {n}} $

  • Probability Additive Theorem -$ {P(A \または\ B)= P(A)+ P(B)\\ [7pt] P(A \ cup B)= P(A)+ P(B)} $

  • Probability Multiplicative Theorem -$ {P(A \ and \ B)= P(A)\ times P(B)\\ [7pt] P(AB)= P(A)\ times P(B)} $

  • Probability Bayes Theorem -$ {P(A_i / B)= \ frac {P(A_i)\ times P(B / A_i)} {\ sum_ {i = 1} ^ k P(A_i)\ times P(B / A_i)}} $

  • Probability Density Function -$ {P(a \ le X \ le b)= \ int_a ^ bf(x)d_x} $

R

  • Reliability Coefficient -$ {Reliability \ Coefficient、\ RC =(\ frac {N} {(N-1)})\ times(\ frac {(Total \ Variance \ --Sum \ of \ Variance)} {Total Variance})} $

  • Residual Sum of Squares -$ {RSS = \ sum_ {i = 0} ^ n(\ epsilon_i)^ 2 = \ sum_ {i = 0} ^ n(y_i-(\ alpha + \ beta x_i))^ 2} $

S

  • Shannon Wiener Diversity Index -$ {H = \ sum [(p_i)\ times ln(p_i)]} $

  • Standard Deviation -$ \ sigma = \ sqrt {\ frac {\ sum_ {i = 1} ^ n {(x- \ bar x)^ 2}} {N-1}} $

  • Standard Error ( SE ) -$ SE_ \ bar {x} = \ frac {s} {\ sqrt {n}} $

  • Sum of Square -$ {Sum \ of \ Squares \ = \ sum(x_i- \ bar x)^ 2} $

T

  • Trimmed Mean -$ \ mu = \ frac {\ sum {X_i}} {n} $