क्वांटम हार्मोनिक थरथरानवाला, शून्य-बिंदु ऊर्जा, और क्वांटम संख्या n
एक क्वांटम हार्मोनिक ऑसिलेटर की ऊर्जा निम्नानुसार दी गई है,
\ start \ समीकरण} E_ {qho} = \ left (n + \ frac {1} {2} \ right) \ hbar \ omega, \; \;?;? \; \? \; n = 0,1,2,3, ... \ टैग {1} \ अंत {समीकरण}
मैं समझता हूं कि हाइज़ेनबर्ग के अनिश्चितता सिद्धांत के निहितार्थ परमाणुओं को एक ठहराव पर भी अनुमति नहीं दे रहे हैं $0$ के। यह अनिश्चितता परमाणुओं में होने वाली कुछ ऊर्जा का कारण है $0$K - शून्य-बिंदु ऊर्जा (ZPE)। अधिकांश ग्रंथ ZPE का परिचय इस बात पर ध्यान देते हैं कि कैसे$n = 0$ अभी भी एक बराबर ऊर्जा शेष है $\frac{1}{2}\hbar\omega$।
है $n$केवल एक संख्या? यदि हां, तो कैसे है$n = 0$ तापमान के साथ क्या करना है?
जवाब
शून्य-बिंदु ऊर्जा का यहाँ कोई महत्व नहीं है, क्योंकि आप हमेशा अपनी संदर्भ ऊर्जा को स्वतंत्र रूप से चुन सकते हैं, आप अपने हैमिल्टन को ऊर्जा द्वारा स्थानांतरित कर सकते हैं $\frac{1}{2}\hbar\omega$ $$ H = \frac{p^2}{2m}+\frac{1}{2}m\omega^2x^2-\frac{1}{2}\hbar\omega, $$और सिस्टम का भौतिकी समान रहेगा (तरंग फ़ंक्शन समान होगा)। चूंकि यह तरंग शून्य पर स्थित एक डेल्टा-फ़ंक्शन नहीं है (जैसा कि यह शास्त्रीय यांत्रिकी में है) लेकिन इसके बजाय और अधिक फैल गया है, तो आप इसकी व्याख्या कर सकते हैं, उदाहरण के लिए, अपने परमाणुओं को अभी भी हिल रहा है जब हैमिलियन के इस स्वदेशी में।
आपके प्रश्न के बारे में: हाँ, $n$केवल एक संख्या है जो सबसे कम से लेकर उच्चतम तक ऊर्जा eigenstates को लेबल करने के लिए है। तापमान केवल अप्रत्यक्ष रूप से खेलता है। एक तापमान को परिभाषित करने के लिए, आपको एक संबद्ध घनत्व मैट्रिक्स के साथ एक थर्मल पहनावा (आपको इसे ठीक से करने के लिए एक से अधिक कण की आवश्यकता है) को परिभाषित करना होगा$\rho$। इसके लिए एक सामान्य विकल्प दिया गया है$$ \rho = \frac{1}{z}\sum_{i=1}^{\infty}|i\rangle e^{-E_{i}/kT} \langle i|, z = \sum_{i=1}^{\infty}e^{-E_i/kT} $$ कहां है $|i\rangle$ ऊर्जा को निरुपित करते हैं और $E_i$ इसी ऊर्जा eigenvalues (हार्मोनिक थरथरानवाला के लिए इस मामले में)। $T$ तापमान है, $k$बस एक स्थिर। आप व्याख्या कर सकते हैं (इसी तरह एक तरंग विस्तार गुणांक) कि कारक$e^{-E_{i}/kT}/z$ राज्य में होने की संभावना है $|i\rangle$। आप देख सकते हैं कि कब$T\rightarrow 0$, केवल सबसे कम ऊर्जा eigenvalue के साथ गुणांक रहेगा (किसी भी उच्च के साथ गुणांक $E_i$-यावल तेजी से गायब हो जाएगा)। इससे काटा जा सकता है कि एक सामान्य प्रणाली के लिए (न केवल आपके हार्मोनिक थरथरानवाला उदाहरण के लिए) सिस्टम सबसे कम ऊर्जा वाली स्थिति में होगा जब$T\rightarrow 0$ (जब तक आपके पास एक थर्मल पहनावा है)।
क्वांटम संख्या n केवल हार्मोनिक ऑसिलेटर द्वारा दिए गए विभिन्न ऊर्जा स्तरों का प्रतिनिधित्व करती है।
$\mathbf{n=0}$किसी दिए गए तापमान के अनुरूप नहीं है, लेकिन अन्य ऊर्जा स्तरों के लिए इसका सापेक्ष व्यवसाय किसी दिए गए तापमान के अनुरूप है। जैसा कि एक प्रणाली तापमान में बढ़ जाती है, उच्चतर स्तर पर उच्च ऊर्जा के स्तर पर कब्जा किया जा सकता है। इसी तरह, 0 K पर एक आवश्यकता है कि केवल सबसे कम ऊर्जा स्तर व्याप्त हो।
है $n$ केवल एक संख्या?
$n$वास्तव में एक संख्या है। क्या यह केवल एक संख्या है? वैसे यह एक क्वांटम संख्या है जिसका अर्थ है कि यह लेबल है$n^{\textrm{th}}$ सिस्टम का उत्साहित ऊर्जा स्तर (यानी $(n+1)^{\textrm{th}}$ सिस्टम के हैमिल्टन का सबसे छोटा आइगनवेल्यू, के साथ $n=0$करने के लिए इसी छोटी से छोटी eigenvalue,$n=1$दूसरे सबसे छोटे ईजेंवल्यू, आदि के अनुरूप ।
अगर ऐसा है तो कैसे करता है $n = 0$ तापमान के साथ कुछ भी करना है?
हार्मोनिक ऑसिलेटर क्षमता वाली प्रणाली का घनत्व मैट्रिक्स अक्सर हैमिल्टन के संदर्भ में दिया जाता है $H$ द्वारा द्वारा:
\ start {समीकरण} \ rho = \ frac {e ^ {- \ Beta H}} {\ textrm {tr} \ left (e ^ {- \ beta H} \ right)}, ~~~~~~~ \ beta \ equiv \ frac {1} {k_BT}। {टैग {1} \ लेबल {eq: boltzmann} \ end {समीकरण}
घनत्व मैट्रिक्स के विकर्ण ऊपर से नीचे-दाएं से फिर आपको सिस्टम खोजने की संभावना बताते हैं $n=0,1,2,\ldots$, जिसका अर्थ है कि यदि घनत्व मैट्रिक्स का शीर्ष-बाएँ तत्व है $p$प्रणाली की संभावना के अनुरूप ऊर्जा स्तर पर पाए जाने की संभावना $n=0$ है $p$। कब$T=0$ हमारे पास प्रणाली की संभावना किसी भी उत्साहित स्थिति में है ($n>0$) क्षयकारी घातांक से अत्यधिक प्रभावित होता है, और आप सिस्टम को खोजने पर भरोसा कर सकते हैं $n=0$स्तर। कब$T$बड़ा है, उत्साहित राज्यों में अधिक आबादी होने की संभावना होगी। जैसा$T$ दृष्टिकोण $+\infty$, घातांक 1 के करीब हो जाता है और हम एक ऐसे परिदृश्य पर पहुंचते हैं जहां संभावनाएं प्रत्येक राज्य के लिए समान हो जाती हैं $n$।
Eq। इस उत्तर में 1 यह भी है:
- Eq। इस उत्तर में 1: सोखना बाध्यकारी ऊर्जा को पूर्ण तापमान पर परिवर्तित करना
- Eq। 3 इस उत्तर में: क्या मैं नि: शुल्क ऊर्जा प्रसार के लिए Zwanzig समीकरण का उपयोग करके पास के सूक्ष्म राज्यों में (अस्थायी रूप से) मुफ्त ऊर्जा अंतर की गणना कर सकता हूं?
- Eq। 2 इस उत्तर में: क्वांटम हार्मोनिक ऑसिलेटर, शून्य-बिंदु ऊर्जा और क्वांटम संख्या n
है $𝑛$ केवल एक संख्या?
संक्षेप में, $n$ क्वांटम हार्मोनिक थरथरानवाला की ऊर्जा मात्रा संख्या है।
अगर ऐसा है तो कैसे करता है $𝑛$=$0$ तापमान के साथ कुछ भी करना है?
विशेष रूप से, $n$=$0$इसका मतलब है कि हार्मोनिक थरथरानवाला अपनी जमीनी स्थिति पर रहेगा। आमतौर पर, एक क्वांटम प्रणाली की जमीन की स्थिति को शून्य तापमान पर रहना माना जाता है। इसलिए, आप के बीच एक कनेक्शन पा सकते हैं$n=0$ और शून्य-बिंदु।
यहाँ शून्य तापमान और जमीनी स्थिति के बीच संबंध के बारे में बात करने के लिए एक पोस्ट है।
- https://physics.stackexchange.com/questions/294593/whats-the-relation-between-zero-temperature-and-ground-state-of-interacting-man
यहां एक पोस्ट है कि थर्मल संतुलन के बारे में बात करने के लिए आकार क्या है (यह तापमान को परिभाषित करना महत्वपूर्ण है):
- https://physics.stackexchange.com/questions/311357/whats-the-size-to-talk-about-thermal-equilibrium
यह मदद कर सकता है।
जैसा कि पहले ही कई अन्य उत्तरों में कहा जा चुका है, $n$ केवल एक संख्या है, और अलग-अलग राज्यों की आबादी है $n$ तापमान पर निर्भर करता है।
हालांकि, एक महत्वपूर्ण बिंदु का अभी तक उल्लेख नहीं किया गया है। परमाणु गति के लिए अक्सर क्वांटम हार्मोनिक थरथरानवाला लगाया जाता है। यह बोर्न-ओपेनहाइमर परमाणु संभावित ऊर्जा सतह के दूसरे क्रम के टेलर विस्तार से उत्पन्न होता है$V({\bf R}) = V({\bf R}_0) + \nabla V|_{{\bf R}={\bf R}_0} \cdot({\bf R}-{\bf R}_0)+\frac 1 2 ({\bf R}-{\bf R}_0)\cdot \nabla\nabla V|_{{\bf R}={\bf R}_0}\cdot ({\bf R}-{\bf R}_0) + \mathcal{O}(|{{\bf R}-{\bf R}_0}|^3)$
जहां पहले क्रम का शब्द गायब हो जाता है $\nabla V|_{{\bf R}={\bf R}_0} ={\bf 0}$ न्यूनतम पर।
चूंकि राज्यों की स्थानिक सीमा बढ़ जाती है $n$anharmonic प्रभावों का महत्व भी बढ़ता है $n$, या बढ़ते तापमान के साथ।