सीमा कानूनों और व्युत्पन्न नियमों के प्रमाण स्पष्ट रूप से मान लेते हैं कि सीमा पहले स्थान पर मौजूद है

Jan 09 2021

कहो मैं व्युत्पन्न खोजने की कोशिश कर रहा था $x^2$पहले सिद्धांतों से भेदभाव का उपयोग करना। सामान्य तर्क कुछ इस तरह होगा:

अगर $f(x)=x^2$, तब फिर \begin{align} f'(x) &= \lim_{h \to 0}\frac{(x+h)^2-x^2}{h} \\ &= \lim_{h \to 0}\frac{2hx+h^2}{h} \\ &= \lim_{h \to 0} 2x+h \end{align} जैसा $h$ दृष्टिकोण $0$, $2x+h$ दृष्टिकोण $2x$, तोह फिर $f'(x)=2x$

इस तर्क के दौरान, मैंने मान लिया $$ \lim_{h \to 0}\frac{f(x+h)-f(x)}{h} $$वास्तव में एक सार्थक वस्तु थी - कि सीमा वास्तव में मौजूद थी। मुझे वास्तव में समझ में नहीं आता है कि इस धारणा का क्या औचित्य है। मेरे लिए, कभी-कभी यह धारणा कि कोई वस्तु अच्छी तरह से परिभाषित है, आपको गलत निष्कर्ष निकालने के लिए प्रेरित कर सकती है। उदाहरण के लिए, यह मानते हुए$\log(0)$ किसी भी अर्थ में, हम यह निष्कर्ष निकाल सकते हैं $$ \log(0)=\log(0)+\log(0) \implies \log(0)=0 \, . $$तो धारणा है कि$\log(0)$ कुछ भी सार्थक का प्रतिनिधित्व करने से हमें गलत तरीके से निष्कर्ष निकाला गया कि यह बराबर था $0$। अक्सर, यह साबित करने के लिए कि एक सीमा मौजूद है, हम इसे तब तक हेरफेर करते हैं जब तक कि हम इसे एक परिचित रूप में नहीं लिख सकते। इसे चेन नियम और उत्पाद नियम के प्रमाणों में देखा जा सकता है। लेकिन अक्सर ऐसा लगता है कि हेरफेर को केवल तब ही उचित ठहराया जा सकता है जब हम जानते हैं कि सीमा पहले स्थान पर मौजूद है! तो वास्तव में यहाँ क्या हो रहा है?


एक अन्य उदाहरण के लिए, श्रृंखला नियम को अक्सर इस प्रकार कहा जाता है:

लगता है कि $g$ पर अलग है $x$, तथा $f$ पर अलग है $g(x)$। फिर,$(f \circ g)$ पर अलग है $x$, और$$ (f \circ g)'(x) = f'(g(x))g'(x) $$

अगर सबूत है कि $(f \circ g)$ पर अलग है $x$बस सीमा परिभाषा का उपयोग करके व्युत्पन्न की गणना करने के लिए, फिर से मैं असंतुष्ट महसूस करता हूं। क्या यह संगणना फिर से यह धारणा नहीं बनाता है कि$(f \circ g)'(x)$ पहली जगह में समझ में आता है?

जवाब

2 twosigma Jan 09 2021 at 21:19

प्रस्ताव : चलो$c \in \mathbb{R}$। मान लीजिए$f$ तथा $g$ परिभाषित और कुछ छिद्रित खुली गेंद पर एक दूसरे के बराबर हैं $(c - \delta) \cup (c + \delta)$ का $c$, कहां है $\delta > 0$। फिर$\lim_{x \to c} f(x)$ मौजूद है तो सिर्फ और सिर्फ अगर $\lim_{x \to c} g(x)$मौजूद। और अगर कोई सीमा मौजूद है, तो दूसरा भी करता है, और वे दोनों समान हैं।

सबूत के स्केच : निरीक्षण करें कि एक बिंदु पर सीमा की परिभाषा$c$ केवल बिंदुओं के साथ ही चिंता करता है $c$ लेकिन नहीं के बराबर है $c$। तो जो भी हो$f$ या $g$ पर $c$, या इस बात के लिए कि वे वहां परिभाषित हैं या नहीं, कोई फर्क नहीं पड़ता। जबसे$f$ तथा $g$ पास के बिंदुओं के बराबर हैं $c$ लेकिन नहीं के बराबर है $c$, हमारे सीमा विवरण के बारे में या तो कार्य करते हैं $c$ इसलिए दूसरे के लिए भी पकड़ होनी चाहिए। $\square$

यह विभिन्न सीमा गणनाओं को सही ठहराता है जो हम अक्सर करते हैं, जैसे कि आपने जो दिखाया था। वास्तव में, हम कदम से कदम अपने उदाहरण के माध्यम से जाना।

अगर $f(x)=x^2$, तब फिर \begin{align} f'(x) &= \lim_{h \to 0}\frac{(x+h)^2-x^2}{h} \\ &= \lim_{h \to 0}\frac{2hx+h^2}{h} \\ &= \lim_{h \to 0} 2x+h \end{align} जैसा $h$ दृष्टिकोण $0$, $2x+h$ दृष्टिकोण $2x$, तोह फिर $f'(x)=2x$

गणना के इन अनुक्रमों का वास्तव में क्या मतलब है या मतलब है? खैर, अंतिम चरण / समानता में, हमने गणना की$\displaystyle \lim_{h \to 0} 2x + h$, जो हम मानते हैं कि मौजूद है और इसके बराबर है $2x$। समारोह के बाद से$\displaystyle \frac{2hx + h^2}{h}$ बराबरी $2x + h$ के पंचर पड़ोस में $0$, हम अब प्रस्ताव का उपयोग कर सकते हैं कि निष्कर्ष निकाला है $\displaystyle \lim_{h \to 0} \frac{2hx + h^2}{h}$ बराबरी $\displaystyle \lim_{h \to 0} 2x + h$, जो बराबर है $2x$। तो लाइन (3) से लाइन (2) तक जाना उचित है। अगला, फ़ंक्शन$\displaystyle \frac{(x+h)^2 - x^2}{h}$ बराबरी $\displaystyle \frac{2hx + h^2}{h}$ के पंचर पड़ोस में $0$, तो फिर से हम लाइन (2) से लाइन (1) तक जाने के औचित्य का उपयोग कर सकते हैं।

इसलिए हमारे पास पीछे की ओर तर्क है, लेकिन व्यावहारिक रूप से सामान्य सीमा गणना में यह आवश्यक नहीं है। जब सीमा नहीं होती है तब भी हमारा तर्क "काम" करता है। यदि अंत में हम मौजूद सीमा पर पहुंचते हैं, तो जरूरी है कि हम पीछे की ओर काम कर सकते हैं और गारंटी दे सकते हैं कि प्रारंभिक पहली सीमा मौजूद है; और यदि अंत में हम ऐसी सीमा पर पहुंचते हैं जो मौजूद नहीं है, तो जरूरी है कि प्रारंभिक पहली सीमा मौजूद नहीं हो सकती, अन्यथा हम प्रस्ताव द्वारा गारंटी की गई समतुल्यता की श्रृंखला को समाप्त करने के लिए गारंटी दे सकते हैं कि अंतिम सीमा मौजूद है।

तो सभी मामलों में "ठीक काम"। ध्यान देने वाली महत्वपूर्ण बात यह है कि हमारे पास प्रत्येक चरण में कुछ तार्किक समतुल्य हैं: सीमा कुछ चरणों में मौजूद है यदि और केवल यदि यह किसी भी पहले या बाद के चरण में मौजूद है।

26 ElliotG Jan 09 2021 at 06:18

आप सही हैं कि यह वास्तव में लिखने के लिए समझ में नहीं आता है $\lim\limits_{h\to 0}\frac{f(x+h)-f(x)}{h}$जब तक हम पहले से ही जानते हैं कि सीमा मौजूद है, लेकिन यह वास्तव में सिर्फ एक व्याकरण मुद्दा है। सटीक होने के लिए, आप पहले कह सकते हैं कि अंतर भागफल फिर से लिखा जा सकता है$\frac{f(x+h)-f(x)}{h}=2x+h$, और फिर इस तथ्य का उपयोग करें कि $\lim\limits_{h\to 0}x=x$ तथा $\lim\limits_{h\to 0}h=0$ साथ ही निरंतर-बहु कानून और सीमा के लिए योग कानून।

अंतिम वाक्य में जोड़ना: सीमा के अधिकांश परिचित गुणों को इस तरह "पीछे" लिखा जाता है। यानी, "सीमा योग कानून" कहता है$$\lim\limits_{x\to c}(f(x)+g(x))=\lim\limits_{x\to c}f(x)+\lim\limits_{x\to c}g(x)$$ जब तक $\lim\limits_{x\to c}f(x)$ तथा $\lim\limits_{x\to c}g(x)$मौजूद है । बेशक, अगर वे मौजूद नहीं हैं, तो हमने जो समीकरण लिखा है, वह व्यर्थ है, इसलिए वास्तव में हमें उस दावे के साथ शुरू करना चाहिए।

व्यवहार में, व्यक्ति आमतौर पर यहां थोड़ा सा आकस्मिक हो सकता है, यदि शब्द गणना को बचाने के लिए किसी अन्य कारण से नहीं। एक इंट्रो एनालिसिस क्लास में, हालाँकि, आप शायद उतना ही सावधान रहना चाहेंगे जितना आप कर सकते हैं।

5 AndreaMarino Jan 09 2021 at 06:38

अन्य उत्तर पूरी तरह से ठीक हैं; सिर्फ एक परिप्रेक्ष्य जो आपके दिन को उन स्थितियों में बचा सकता है जिसमें सीमा का अस्तित्व वास्तव में एक महत्वपूर्ण बिंदु है।

महत्वपूर्ण परिभाषा लिमसअप और लिमिनाफ में से एक है: ये हमेशा अच्छी तरह से परिभाषित होते हैं, और आपको इस समय सभी को जानना होगा निम्नलिखित दो गुण हैं:

  1. $\liminf_{x \to x_0} f(x) \le \limsup_{x\to x_0} f(x) $
  2. की सीमा $f$ मौजूद है तो सिर्फ और सिर्फ अगर $\liminf_{x \to x_0} f(x) = \limsup_{x\to x_0} f(x) $, और इस मामले में सीमा इस मूल्य से सहमत है।

अब कल्पना करें कि आप अपनी गणना दो बार करते हैं: सबसे पहले, आप लिमिनेफ की गणना करते हैं; तब आप लिम्पस की गणना करते हैं। दोनों संगणनाओं में, जैसे ही आप किसी ऐसी चीज पर पहुंचते हैं जिसमें वास्तव में सीमा होती है (जैसे$2x+h$), संपत्ति के कारण (2) आप inf / sup कहानी के बारे में भूल सकते हैं और बस सीमा की गणना कर सकते हैं।

चूँकि कुछ जोड़-तोड़ के साथ आप किसी ऐसी चीज़ तक पहुँचते हैं जिसकी वास्तव में सीमा होती है, दोनों गणनाएँ एक ही परिणाम देंगी और संपत्ति (2) के कारण फिर से, सीमा मौजूद है और आपके द्वारा गणना किए गए मूल्य के साथ मेल खाती है।

अब यह वास्तव में वह चीज नहीं है जो आपको करनी चाहिए अगर आप परिचयात्मक विश्लेषण कर रहे हैं और आप लिमिनफ और लिम्सअप को नहीं जानते हैं: इन दोनों के औपचारिक गुण सीमित गुणों से थोड़ा अलग हैं, और आप एक त्रुटि के साथ समाप्त हो सकते हैं। लेकिन जब तक आप सीमा को "स्पर्श" नहीं करते हैं, और आप सिर्फ थिमिट के अंदर कुछ हेरफेर करते हैं, तब भी यही तर्क होगा: यदि आप एक अच्छी तरह से परिभाषित परिणाम के साथ समाप्त होते हैं, तो यह सीमा है :)

5 Dark Jan 10 2021 at 01:54

हमारे यहाँ क्या वास्तव में कई बयानों के रूप में व्याख्या की जानी चाहिए:

(१.) यदि $ \lim_{h \to 0} \frac{2hx + h^2}{h} $ तब मौजूद है $ \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$ मौजूद है और बराबर है $\lim_{h \to 0} \frac{2hx + h^2}{h} $

(२.) यदि $ \lim_{h \to 0} [2x + h] $ तब मौजूद है $ \lim_{h \to 0} \frac{2hx + h^2}{h}$ मौजूद है और बराबर है $\lim_{h \to 0} [2x + h]$

(३.) यदि $ \lim_{h \to 0} 2x$ तब मौजूद है $ \lim_{h \to 0} [2x + h]$ मौजूद है और बराबर है $ \lim_{h \to 0} 2x$

(4.) $ \lim_{h \to 0} 2x$ मौजूद है और बराबर है $ 2x $

ध्यान दें कि एक बार हमारे पास (4.) "if" (सशर्त) का हिस्सा (3.) संतुष्ट है और इसलिए सभी तरह से (1.) तक है। आप यह देख सकते हैं कि यह कथन 1 से 3 में मौजूद है, यह समस्या नहीं है क्योंकि आपने उस धारणा का उपयोग नहीं किया है जो यह साबित करता है कि वास्तव में यह करता है। यह परिपत्र तर्क होगा और अच्छा नहीं होगा।

आपका लॉग उदाहरण इस तरह से अलग है कि आपके पास एक बयान नहीं है जो ऊपर कथन (4.) की भूमिका लेता है, जो आपको सशर्त से बचने की अनुमति देगा। आपने ही सिद्ध किया है$\log(0) = 0$ अगर $\log(0)$ मौजूद है, ऐसा नहीं है $\log(0)$मौजूद! यह अपने आप में एक गलत निष्कर्ष नहीं है।

4 user21820 Jan 09 2021 at 16:24

यदि आप अधिक सटीक होना चाहते हैं तो आप लिख सकते हैं:

$f'(x) = \lim_{h→0} \frac{(x+h)^2-x^2}{h}$ अगर सीमा मौजूद है

    $= \lim_{h→0} (2x+h)$ अगर सीमा मौजूद है

    $= 2x$

मतलब यह है कि प्रत्येक पंक्ति केवल "यदि सीमा मौजूद है" रखती है। लेकिन हम वास्तव में दो कारणों से ज्यादातर मामलों में ऐसा करने की जहमत नहीं उठाते:

  1. यह आमतौर पर मानसिक रूप से इस तरह की स्थितियों को जोड़ने और जाँचने के लिए पर्याप्त है कि हमने किसी भी बिंदु पर सीमा के अस्तित्व पर भरोसा नहीं किया।

  2. यदि हम अभिव्यक्तियों को "अपरिभाषित मूल्य" प्राप्त करने की अनुमति देते हैं, और परिभाषित करते हैं कि "अपरिभाषित" उप-अभिव्यक्ति के साथ प्रत्येक अभिव्यक्ति स्वयं अपरिभाषित है, तो हमें शर्त "सीमा मौजूद होने पर" लिखने की भी ज़रूरत नहीं है! यदि सीमा परिभाषित नहीं है, तो "$\lim \cdots$"अभिव्यक्ति में बस" अपरिभाषित "मूल्य होगा, जो किसी भी गलत निष्कर्ष पर नहीं जाएगा ।

2 MichaelHardy Jan 10 2021 at 02:37

व्युत्पन्न तब तक मौजूद नहीं है जब तक कि अंतर भागफल की सीमा मौजूद नहीं है।

"सीमा कानून" जो कहता है कि दो कार्यों की राशि की सीमा दो अलग-अलग सीमाओं के योग के बराबर है जब तक कि दो अलग-अलग सीमाएं मौजूद नहीं होती हैं। नोटिस जो

  • ऐसे कोई मामले नहीं हैं जहां दो अलग-अलग सीमाएं मौजूद हैं और योग की सीमा नहीं है। यदि दो अलग-अलग सीमाएँ मौजूद हैं, तो योग की सीमा है।

  • हालांकि, ऐसे मामले हैं जिनमें दो अलग-अलग सीमाएं मौजूद नहीं हैं और योग की सीमा है। कुछ इसी तरह की स्थिति उत्पादों के लिए लागू करने के बजाय कुछ मैं हाल ही में यहाँ पोस्ट किया गया (मैं इसे अभी नहीं मिल सकता है) पैदा हुआ। दो कारकों में से एक के लिए सीमा मौजूद नहीं थी, लेकिन फ़ंक्शन बाध्य था और इसलिए उत्पाद की सीमा को निचोड़कर पाया जा सकता था।

1 leftaroundabout Jan 10 2021 at 09:10

अगर हम सिर्फ विचार करें तो यह मुद्दा काफी हद तक गायब हो जाता है $\lim$ तथा $\log$आंशिक कार्यों के रूप में स्पष्ट रूप से । एक आंशिक फ़ंक्शन को एक फ़ंक्शन के रूप में देखा जा सकता है, जिसके कोडोमैन में एक अतिरिक्त ( अलग-अलग ) तत्व होता है, मूल रूप से "त्रुटि मान"।$$\begin{align} \log :&& \mathbb{R} \not\to \mathbb{R} \\ \lim_0 :&& ((\mathbb{R}\setminus\{0\})\to\mathbb{R}) \not\to \mathbb{R} \end{align}$$ हमारे पास उदाहरण के लिए है $$\begin{align} \log(1) =& \text{OK}(0) \\ \log(0) =& \text{ERR} \\ \lim_0( h\mapsto \tfrac{\sin h}{h}) =& \text{OK}(1) \\ \lim_0( h\mapsto \tfrac1{h}) =& \text{ERR} \end{align}$$

अब, लघुगणक कानून $$ \log(a\cdot b) = \log a + \log b $$ एक "उठाया" के साथ समझा जाना है $+$ऑपरेटर, कि बस पर दोनों तरफ विफलता गुजरती है। लेकिन इसका मतलब यह है कि इस ऑपरेटर के लिए, हम इसका अनुमान नहीं लगा सकते हैं$p+q=p$ उस $q=0$, चूंकि $\text{ERR}+q$है हमेशा $\text{ERR}$चाहे! इसके बजाय, केवल से$\text{OK}(p)+q = \text{OK}(p)$ हम अनुमान लगा सकते हैं $q = \text{OK}(0)$। इस प्रकार हम गलत निष्कर्ष पर नहीं पहुंचते हैं$\log(0)$, क्योंकि वह नहीं है $\text{OK}$ मान।

भेदभाव में सीमाओं के लिए लागू, हम तुरंत लिख सकते हैं$$ f'(x) = \lim_0\left(h\mapsto\frac{f(x+h)-f(x)}{h}\right) $$ सिर्फ यह देखते हुए कि परिणाम हो सकता है $\text{ERR}$। बिना किसी समस्या के हम क्या कर सकते हैं, किसी भी चीज़ के साथ सीमा के अंदर की अभिव्यक्ति को फिर से लिखना है - एक फ़ंक्शन के रूप में$h\mapsto\ldots$- वास्तव में ( एक्सटेंसिकली ) वही है। यह विशेष रूप से कोई समस्या नहीं है$$\begin{align} f'(x) =& \lim_0\left(h\mapsto\frac{(x+h)^2-x^2}{h}\right) \\ =& \lim_0\left(h\mapsto\frac{2\cdot h\cdot x+h^2}{h}\right) \end{align}$$ चूंकि $h\mapsto\frac{(x+h)^2-x^2}{h}$ तथा $h\mapsto\frac{2\cdot h\cdot x+h^2}{h}$ वास्तव में सभी के लिए समान हैं $h\in\mathbb{R}$। फिर भी, इस बिंदु पर हम नहीं जानते कि क्या दोनों में से कोई भी सीमा वास्तव में मौजूद है - वे दोनों हो सकते हैं$\text{ERR}$, अथवा दोनों $\text{OK}$, लेकिन किसी भी दर के बराबर।

अगले चरण के लिए हमें इस तथ्य की आवश्यकता है कि सीमा अपने तर्क को केवल एक फ़ंक्शन के रूप में मानती है जो कि नॉनज़ेरो संख्याओं के साथ डोमेन है, क्योंकि केवल उस डोमेन पर एक फ़ंक्शन के रूप में माना जाता है। $h\mapsto\frac{2\cdot h\cdot x+h^2}{h}$ के रूप में एक ही कार्य $h\mapsto 2\cdot x+h$

और वह यह है, इस बिंदु पर हम पढ़ सकते हैं कि सीमा वास्तव में है $\text{OK}(2\cdot x)$ और वापस जाते हुए हम देखते हैं कि अन्य सीमाएँ भी रही होंगी $\text{OK}$ उसी मूल्य के साथ।

1 stevengregory Jan 11 2021 at 05:50

ध्यान दें कि $\dfrac{(x+h)^2-x^2}{h}$ अपरिभाषित है $h=0$ और वह, जब $h \ne 0$,

$$\dfrac{(x+h)^2-x^2}{h} = \frac{2hx+h^2}{h} = 2x+h$$

हालांकि, समारोह $:x \mapsto 2x+h$ परिभाषित किया गया है, निरंतर है, और इसका एक मूल्य है $2x$ पर $h=0$

हमें भी उपयोग करने की आवश्यकता है

$$\lim_{h \to 0}\frac{2hx+h^2}{h} = \lim_{h \to 0}\frac hh \; \lim_{h \to 0}\frac{2x+h}{1} = \lim_{h \to 0} (2x+h) = 2x$$

बाकी इस प्रकार है।

BirdSetFree7 Jan 09 2021 at 06:21

अंतिम चरण से पहले पहले तर्क में सीमा की कोई संपत्ति का उपयोग नहीं किया गया था, इसलिए वास्तव में हमने सीमा के अंदर जो किया है वह सिर्फ पुनर्लेखन है और जब हम अंतिम चरण में पहुंचते हैं तो हम एप्सिलॉन-डेल्टा परिभाषा का उपयोग करके अस्तित्व दिखा सकते हैं जो स्पष्ट रूप से संबंधित है अस्तित्व का मुद्दा, यही बात चेन रूल नियम पर लागू होती है क्योंकि अंतिम चरण से पहले सबूत में हर बात सिर्फ पुनर्लेखन है और अंतिम चरण जो सीमा के गुणों का उपयोग करते हैं जो कि एप्सिलॉन डेल्टा परिभाषा अस्तित्व के मुद्दे से संबंधित है, आशा है कि यह मदद करता है

Vercassivelaunos Jan 09 2021 at 06:16

यदि हम बिल्कुल स्पष्ट होना चाहते हैं, तो व्युत्पन्न के लिए तर्क निम्नलिखित होना चाहिए: $\lim\limits_{h\to0}\frac{(x+h)^2-x^2}{h}$ तथा $\lim\limits_{h\to0}2x+h$दोनों मौजूद हैं और समान हैं यदि केवल और केवल उनमें से कम से कम एक मौजूद है। जबसे$\lim\limits_{h\to0}2x+h$ वास्तव में मौजूद है और है $2x$, इसलिए दूसरी सीमा भी होनी चाहिए $\lim_{h\to0}\frac{(x+h)^2-x^2}{h}$) मौजूद हैं और हो $2x$

यह आपके लघुगणक उदाहरण के लिए काम नहीं करता है: आप यह तर्क दे सकते हैं $\log0$ तथा $\log0+\log0$मौजूद हैं और समान हैं यदि दोनों में से कम से कम एक मौजूद है। लेकिन न तो मौजूद है, इसलिए बिंदु मूक है।