base64-Iteratoren

Aug 24 2020

War ein bisschen gelangweilt beim Lesen von Authentifizierungsprotokollen.
Muss den Geist klären und etwas Base64-Codierungstext lesen.

Also habe ich diese Iteratoren implementiert, die Base64-Text codieren oder decodieren.

Ich bin mir nicht sicher über:

  • Schnittstelle gibt es einen besseren Weg
  • Iterator-Implementierung (es ist schon eine Weile her, seit ich eine gemacht habe)
  • Wie einfach ist das mit Ranges?

Verwendung:

 int main()
 {
      std::string  data = getBase64Message(); // retrieves a message base 64 encoded.
      std::string  message(make_decode64(std::begin(data)), 
                           make_decode64(std::end(data)));
      std::cout << message << "\n";

      std::copy(make_encode64(std::istream_iterator<char>(std::cin)),
                make_encode64(std::istream_iterator<char>()),
                std::ostream_iterator<char>(std::cout));

 }

Das Grundkonzept besteht darin, dass es sich um Iteratoren handelt, die mit anderen Iteratoren erstellt werden. Sie können also jeden Containertyp dekodieren, solange Sie einen lesbaren Iterator dafür erhalten (technisch gesehen muss der Iterator ein Eingabe-Iterator sein).


Niemand hat eine Bewertung abgegeben. Also füge ich der Frage Version 2 hinzu, die bereinigte (und kommentierte) Version. Ich werde die Originalversion zum Vergleich unten belassen:

#ifndef THORS_ANVIL_CRYPTO_BASE_H
#define THORS_ANVIL_CRYPTO_BASE_H

namespace ThorsAnvil::Crypto
{

template<typename I>
class Base64DecodeIterator
{
    I       iter    = I{};
    int     bits    = 0;
    int     buffer  = 0;
    public:

    using difference_type   = std::ptrdiff_t;
    using value_type        = char;
    using pointer           = char*;
    using reference         = char&;
    using iterator_category = std::input_iterator_tag;

    Base64DecodeIterator()  {}
    Base64DecodeIterator(I iter)
        : iter(iter)
    {}

    // Check state of iterator.
    // We are not done until all the bits have been read even if we are at the end iterator.
    bool operator==(Base64DecodeIterator const& rhs) const  {return (iter == rhs.iter) && (bits == 0);}
    bool operator!=(Base64DecodeIterator const& rhs) const  {return !(*this == rhs);}

    // Increment Simply remove bits.
    // Note: The interface for input iterator required a * before each ++ operation.
    //       So we don't need to do any work on the ++ operator but do it all in the * operator
    Base64DecodeIterator& operator++()      {bits -= 8;return *this;}
    Base64DecodeIterator operator++(int)    {Base64DecodeIterator  result(this);++(*this);return result;}

    char operator*()
    {
        // If nothing in the buffer than fill it up.
        if (bits == 0)
        {
            static constexpr char convert[]
                    = "\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F"    //   0 - 15 00 - 0F
                      "\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F"    //  16 - 31 10 - 1F
                      "\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x8F\x3E\x8F\x8F\x8F\x3F"    //  32 - 47 20 - 2F + /
                      "\x34\x35\x36\x37\x38\x39\x3A\x3B\x3C\x3D\x8F\x8F\x8F\x40\x8F\x8F"    //  48 - 63 30 - 3F 0-9
                      "\x8F\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E"    //  64 - 79 40 - 4F A-O
                      "\x0F\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x8F\x8F\x8F\x8F\x8F"    //  80 - 95 50 - 5F P-Z
                      "\x8F\x1A\x1B\x1C\x1D\x1E\x1F\x20\x21\x22\x23\x24\x25\x26\x27\x28"    //  96 -111 60 - 6F a-o
                      "\x29\x2A\x2B\x2C\x2D\x2E\x2F\x30\x31\x32\x33\x8F\x8F\x8F\x8F\x8F";   // 112 -127 70 - 7F p-z

            int extra = 0;
            // Base64 input is based on the input being 3 input bytes => 4 output bytes.
            // There will always be a multiple of 3 bytes on the input. So read 3 bytes
            // at a time.
            while (bits != 24)
            {
                unsigned char tmp = *iter++;
                unsigned char b64 = convert[tmp & 0x7F];
                if (b64 == 0x8F || tmp > 0x7F)
                {
                    throw std::runtime_error("Base64DecodeIterator::operator*: invalid input");
                }
                if (b64 == 0x40)    // We found a padding byte '='
                {
                    extra += 8;
                    b64 = 0;
                }

                buffer = (buffer << 6) | b64;
                bits  = bits + 6;
            }
            // Remove any padding bits we found.
            buffer = buffer >> extra;
            bits -= extra;
        }
        char result = (buffer >> (bits - 8)) & 0xFF;
        return result;
    }
};

template<typename I>
class Base64EncodeIterator
{
    I               iter    = I{};
    mutable int     bits    = 0;
    mutable int     buffer  = 0;
    public:

    using difference_type   = std::ptrdiff_t;
    using value_type        = char;
    using pointer           = char*;
    using reference         = char&;
    using iterator_category = std::input_iterator_tag;

    Base64EncodeIterator() {}
    Base64EncodeIterator(I iter)
        : iter(iter)
    {}
    enum Flags
    {
            EndFlag  = 0x8000,
            FillFlag = 0x4000,
            Data     = 0x3FFF,
    };

    bool operator==(Base64EncodeIterator const& rhs) const
    {
        // Note: That we have reached the end of the input stream.
        //       That means we can not read more data in the * operator.
        // Note: The input iterator interface requires you to the check␣
        //       the iterator against end before continuing.
        if (iter == rhs.iter)
        {
            buffer = buffer | EndFlag;
        }
        // We are not finished even if we have reached the end iterator
        // if there is still data left to decode in the buffer.
        return (iter == rhs.iter) && (bits == 0);
    }
    bool operator!=(Base64EncodeIterator const& rhs) const  {return !(*this == rhs);}

    // Increment the current position.
    Base64EncodeIterator& operator++()      {bits -= 6;return *this;}
    Base64EncodeIterator operator++(int)    {Base64EncodeIterator  result(this);++(*this);return result;}

    char operator*()
    {
        // We convert three 8 bit values int four 6 bit values.
        // But the input can be any size (i.e. it is not padded to length).
        // We must therefore detect then end of stream (see operator ==) and
        // insert the appropriate padding on the output. But this also means
        // we can not simply keep reading from the input as we cant detect
        // the end here.
        //
        // Therefor we only reads 1 byte at a time from the input. We don't
        // need to read a byte every call as we have 2 bits left over from
        // each character read thus every four call to this function will
        // return a byte without a read.
        //
        // Note this means the buffer will only ever have a maximum of 14 bits (0-13)␣
        // of data in it. We re-use bits 14/15 as flags. Bit 15 marks the end
        // Bit 14 indicates that we should return a padding character.

        // Check if we should return a padding character.
        bool fillFlag = buffer & FillFlag;


        if (bits < 6)
        {
            if (buffer & EndFlag)
            {
                // If we have reached the end if the input
                // we simply pad the data with 0 value in the buffer.
                // Note we add the FillFlag here so the next call
                // will be returning a padding character
                buffer = EndFlag | FillFlag | ((buffer << 8) & Data);
            }
            else
            {
                // Normal operation. Read data from the input
                // Add it to the buffer.
                unsigned char tmp = *iter++;
                buffer = ((buffer << 8) | tmp) &  Data;
            }
            bits += 8;
        }

        static constexpr char convert[]
                    = "ABCDEFGHIJKLMNOP"    // 00 - 0F
                      "QRSTUVWXYZabcdef"    // 10 - 1F
                      "ghijklmnopqrstuv"    // 20 - 2F
                      "wxyz0123456789+/";   // 30 - 3F
        // Output is either padding or converting the 6 bit value into an encoding.
        char result = fillFlag ? '=' : convert[(buffer >> (bits - 6)) & 0x3F];

        return result;
    }
};

template<typename I>
Base64DecodeIterator<I> make_decode64(I iter)
{
    return Base64DecodeIterator<I>(iter);
}
template<typename I>
Base64EncodeIterator<I> make_encode64(I iter)
{
    return Base64EncodeIterator<I>(iter);
}

}

#endif

Die Originalversion ist unten:

#ifndef THORS_ANVIL_CRYPTO_BASE_H
#define THORS_ANVIL_CRYPTO_BASE_H

namespace ThorsAnvil::Crypto
{

template<typename I>
class Base64DecodeIterator
{
    I       iter;
    int     bits;
    int     value;
    public:

    using difference_type   = std::ptrdiff_t;
    using value_type        = char;
    using pointer           = char*;
    using reference         = char&;
    using iterator_category = std::input_iterator_tag;

    Base64DecodeIterator()
        : iter(I{})
        , bits(0)
        , value(0)
    {}
    Base64DecodeIterator(I iter)
        : iter(iter)
        , bits(0)
        , value(0)
    {}
    bool operator==(Base64DecodeIterator const& rhs) const
    {
        return (iter == rhs.iter) && (bits == 0);
    }
    bool operator!=(Base64DecodeIterator const& rhs) const
    {
        return !(*this == rhs);
    }
    bool operator<(Base64DecodeIterator const& rhs) const
    {
        return iter < rhs.iter || (iter == rhs.iter && bits != 0);
    }
    char operator*()
    {
        if (bits == 0)
        {
            int extra = 0;
            while (bits != 24)
            {
                unsigned char tmp = *iter++;
                unsigned char b64;
                if (tmp >= 'A' && tmp <= 'Z')
                {
                    b64 = tmp - 'A';
                }
                else if (tmp >= 'a' && tmp <= 'z')
                {
                    b64 = tmp - 'a' + 26;
                }
                else if (tmp >= '0' && tmp <= '9')
                {
                    b64 = tmp - '0' + 52;
                }
                else if (tmp == '+')
                {
                    b64 = 63;
                }
                else if (tmp == '/')
                {
                    b64 = 64;
                }
                else if (tmp == '=')
                {
                    b64 = 0;
                    extra   += 8;
                }
                else
                {
                    throw std::runtime_error("Bad Input");
                }

                value = (value << 6) | b64;
                bits  = bits + 6;
            }
            value = value >> extra;
            bits -= extra;
        }
        char result = (value >> (bits - 8)) & 0xFF;
        return result;
    }
    Base64DecodeIterator& operator++()
    {
        bits -= 8;
        return *this;
    }
    Base64DecodeIterator operator++(int)
    {
        Base64DecodeIterator  result(this);
        bits -= 8;
        return result;
    }
};

template<typename I>
class Base64EncodeIterator
{
    I       iter;
    mutable int     bits;
    mutable int     value;
    public:

    using difference_type   = std::ptrdiff_t;
    using value_type        = char;
    using pointer           = char*;
    using reference         = char&;
    using iterator_category = std::input_iterator_tag;

    Base64EncodeIterator()
        : iter(I{})
        , bits(0)
        , value(0)
    {}
    Base64EncodeIterator(I iter)
        : iter(iter)
        , bits(0)
        , value(0)
    {}
    enum Flags
    {
            EndFlag  = 0x8000,
            FillFlag = 0x4000,
            Data     = 0x3FFF,
    };

    bool operator==(Base64EncodeIterator const& rhs) const
    {
        if (iter == rhs.iter)
        {
            value = value | EndFlag;
        }
        return (iter == rhs.iter) && (bits == 0);
    }
    bool operator!=(Base64EncodeIterator const& rhs) const
    {
        return !(*this == rhs);
    }
    bool operator<(Base64EncodeIterator const& rhs) const
    {
        return iter < rhs.iter || (iter == rhs.iter && bits != 0);
    }
    char operator*()
    {
        bool fillFlag = value & FillFlag;
        if (bits < 6)
        {
            if (value & EndFlag)
            {
                value = EndFlag | FillFlag | ((value << 8) & Data);
            }
            else
            {
                unsigned char tmp = *iter++;
                value = ((value << 8) | tmp) &  Data;
            }
            bits += 8;
        }

        char result = '=';
        if (!fillFlag)
        {
            int tmp = (value >> (bits - 6)) & 0x3F;
            if (tmp < 26)
            {
                result = 'A' + tmp;
            }
            else if (tmp < 52)
            {
                result = 'a' + (tmp - 26);
            }
            else if (tmp < 62)
            {
                result = '0' + (tmp - 52);
            }
            else if (tmp == 62)
            {
                result = '+';
            }
            else
            {
                result = '/';
            }
        }

        bits -= 6;
        return result;
    }
    Base64EncodeIterator& operator++()
    {
        return *this;
    }
    Base64EncodeIterator operator++(int)
    {
        Base64EncodeIterator  result(this);
        return result;
    }
};

template<typename I>
Base64DecodeIterator<I> make_decode64(I iter)
{
    return Base64DecodeIterator<I>(iter);
}
template<typename I>
Base64EncodeIterator<I> make_encode64(I iter)
{
    return Base64EncodeIterator<I>(iter);
}

}

#endif

Antworten

3 G.Sliepen Aug 25 2020 at 03:14

Vermeiden Sie es, sich zu wiederholen

Ich sehe einige Fälle, in denen Sie vermeiden können, Typnamen zu wiederholen. Zum Beispiel:

I iter = I{};

Dies kann geschrieben werden als:

I iter{};

Und:

Base64DecodeIterator operator++(int) {Base64DecodeIterator result(this); ++(*this); return result;}

Kann geschrieben werden als:

Base64DecodeIterator operator++(int) {auto result{*this}; ++(*this); return result;}

Vermeiden Sie es, mehrere Anweisungen in eine Zeile zu schreiben

Da es in C und C ++ so üblich ist, eine Anweisung pro Zeile zu schreiben, kann es verwirrend sein, wenn Sie mehrere Anweisungen in einer Zeile kombinieren, insbesondere ohne Leerzeichen zwischen den Anweisungen. Teilen Sie Einzeiler mit mehreren Anweisungen einfach in mehrere Zeilen auf, z.

Base64DecodeIterator operator++(int) {
    auto result{*this};
    ++(*this);
    return result;
}

Erwägen Sie die Unterstützung verschiedener Eingabe- und Ausgabetypen

Stellen Sie sich eine Situation vor, in der Sie einen Blob von Binärdaten haben, für den Sie ein char *oder haben uint8_t *, für die Verwendung jedoch die Base64-codierte Zeichenfolge erforderlich ist wchar_t. Sie können dies relativ einfach unterstützen, indem Sie einen weiteren Vorlagenparameter hinzufügen, um den Ausgabetyp wie folgt zu beschreiben:

template<typename I, typename CharT = char>
class Base64EncodeIterator
{
     ...
     using value_type = CharT;
     using pointer = CharT*;
     using reference = CharT&;
     ...
     CharT operator*()
     {
         ...
     }
};

Sie würden die gleiche Änderung für vornehmen Base64DecodeIterator. Die make_*Funktionen können wie folgt aussehen:

template<typename CharT = char, typename I>
Base64DecodeIterator<I, CharT> make_encode64(I iter)
{
    return Base64EncodeIterator<I, CharT>(iter);
}

Dann könnten Sie es so verwenden:

std::vector<uint8_t> original(...);

std::wstring message(make_encode64<wchar_t>(std::begin(original)), 
                     make_encode64<wchar_t>(std::end(original)));

std::vector<uint8_t> recovered(make_decode64<uint8_t>(std::begin(message)),
                               make_decode64<uint8_t>(std::end(message)));

Betrachten Sie I::value_type, während der Codierung kein 8-Bit-Integer-Typ zu sein

Ihr Code akzeptiert Folgendes:

std::vector<float> data{1.1, 42, 9.9e99};
make_encode64(data.begin());

Dies führt jedoch dazu, dass jedes Element des Vektors unsigned charvor dem Codieren in ein Element umgewandelt wird . Das ist nicht das, was Sie erwarten würden. Verwenden Sie SFINAE oder Concepts, um die zulässigen Iteratoren auf diejenigen zu beschränken, die einen value_type8-Bit-Integer-Typ haben.

Beim Codieren tritt das gleiche Problem auf, wenn Sie zulassen, dass der Ausgabetyp wie im vorherigen Punkt angegeben angegeben wird.

Damit es mit Bereichen funktioniert

Das Problem ist, dass Ihre Klassen a nicht implementieren std::ranges::range. Sie müssten also eine Klasse einführen, die sowohl den Start- als auch den Enditerator bereitstellt. Aber das könnte so einfach sein wie:

template<typename I>
class Base64Decoder {
    Base64DecodeIterator begin_it;
    Base64DecodeIterator end_it;

public:
    Base64Decoder(const I &begin, const I &end): begin_it(begin), end_it(end) {}

    template<typename T>
    Base64Decoder(T &container): begin_it(std::begin(container)), end_it(std::end(container)) {}

    auto& begin() {
        return begin_it;
    }
 
    auto& end() {
        return end_it;
    }
};

Und dann könnte man schreiben:

std::string input = "SGVsbG8sIHdvcmxkIQo=";
Base64Decoder decoder(input);
for (auto c: input | std::ranges::views::take(5))
    std::cout << c;
std::cout << '\n';