तथ्य यह नहीं है कि हम निरंतरता की परिकल्पना को बलपूर्वक लागू कर सकते हैं क्या निरंतरता परिकल्पना को साबित कर सकता है?
मैं गणितज्ञों के लिए निक वीवर फोर्सिंग और अध्याय 12 ("मजबूर सीएच") पढ़ रहा हूं वह इस के साथ शुरू होता है (पृष्ठ 45 - 46):
(यहां सब कुछ से संबंधित है $M$ - जो उनकी किताब में ZFC का मॉडल है)।
लश्कर $P_1$ सभी आंशिक कार्यों का समूह हो $\mathcal{P}(\mathbb{N})$ सेवा $\aleph_1$ (जो एक मजबूर धारणा है) और चलो $G$ का एक सामान्य आदर्श हो $P_1$। के तत्वों के बाद से$G$ ऐसे कार्य हैं जो लगातार होने चाहिए (तब से $G$ एक आदर्श है) आप फ़ंक्शन बनाने के लिए उनमें से यूनियन ले सकते हैं $\tilde{f}$ के सबसेट से $\mathcal{P}(\mathbb{N})$ एक सबसेट के लिए $\aleph_1$।
वह फिर साबित करता है कि:
- $\tilde{f}$ के एक सबसेट से एक (केवल एक समारोह नहीं) एक आक्षेप है $\mathcal{P}(\mathbb{N})$ एक सबसेट के लिए $\aleph_1$ एक साथ सुसंगत पूर्वाग्रह को पैच करने के बाद से आपको एक आपत्ति मिलती है।
- का डोमेन $\tilde{f}$ सभी का है $\mathcal{P}(\mathbb{N})$ जबसे $G$ सामान्य है।
- की सीमा $\tilde{f}$ सभी का है $\aleph_1$ जबसे $G$ सामान्य है।
जहां तक मैं बता सकता हूं कि कोई भी मॉडल दिया गया है $M$ ZFC (यानी कोई भी सेट जिसके लिए ZFC रखती है), से एक आपत्ति है $\mathcal{P}(\mathbb{N})$ सेवा $\aleph_1$ और इसलिए सातत्य परिकल्पना सच है।
मुझे पता है कि वह बात करने के लिए जाता है $M[G]$ लेकिन, जहां तक मैं बता सकता हूं, कोई भी $M[G]$ ZFC का सिर्फ एक और मॉडल है और बहुत अच्छा सेट हो सकता है जिसे हमने चुना है $M$।
जवाब
लेकिन आक्षेप $\widetilde f$ इसमें नहीं है $M$, यह पूरी बात है। यह अंदर है$M[G]$। आपने जो दिखाया है, वह हर मॉडल के लिए है$\sf ZFC$, इसमें एक बड़ा मॉडल है $\sf CH$ सच हैं।
यह देखने के लिए वास्तव में $\widetilde f\notin M$, ध्यान दें कि किसी भी फ़ंक्शन दिया$g\colon \mathcal P(\Bbb N)\to\omega_1$, स्थितियों का घना सेट है $p$ ऐसा है कि $p\nsubseteq g$। इसलिए उदारता से,$\widetilde f\neq g$। अगर$\widetilde f$ में किसी भी फ़ंक्शन के बराबर नहीं है $M$, तो यह अंदर नहीं हो सकता $M$।
(यह, अधिक मोटे तौर पर, यही वजह है कि जब भी कोई बाध्यता nontrivial होती है, ग्राउंड मॉडल में कोई सामान्य फ़िल्टर नहीं होते हैं।)
यहाँ कुंजी यह है कि $G$ सामान्य से अधिक होना आवश्यक है $M$, और एक परिणाम के रूप में $G \not\in M$।
जैसा कि आपने देखा है, यदि आप ZFC का एक मॉडल बना सकते हैं जिसमें शामिल हैं $G$ और जो इससे सहमत है $M$ किस बारे में $\mathcal{P}(\mathbb{N})$ तथा $\aleph_1$हैं, तो उस मॉडल में CH पकड़ लेंगे। मजबूर हमें बताता है कि इस तरह के मॉडल का निर्माण कैसे किया जाता है, और इसलिए हमें पता चलता है कि एक मॉडल दिया गया है$M$हम एक मॉडल बना सकते हैं जहां सीएच रखती है। यह हमें ZFC + CH की सापेक्ष संगति दिखाता है, लेकिन यह CH को प्रमाणित नहीं करता है।
मुझे मौजूदा उत्तरों में कुछ बिंदु जोड़ने चाहिए:
सबसे पहले, एक महत्वपूर्ण बिंदु है जिसका उल्लेख मौजूदा उत्तरों में नहीं किया गया है: यह ध्यान रखना महत्वपूर्ण है कि जेनेरिक हमेशा मौजूद नहीं होते हैं । हम केवल अस्तित्व की गारंटी देते हैं$M$है गणनीय । अतः कथन
हर एक $M\models\mathsf{ZFC}$ कुछ का एक सबमॉडल है $N\models\mathsf{ZFC+CH}$
वास्तव में सच नहीं है - हमें गिनती करने के लिए प्रतिबंधित करने की आवश्यकता है $M$एस वास्तव में, यदि$\mathsf{CH}$ वास्तव में झूठ है तो कुछ है $M$ कोई अंतिम विस्तार संतोषजनक नहीं है $\mathsf{CH}$: अर्थात्, कोई भी मॉडल जिसमें सभी वास्तविक हैं।
एक जोड़ी की टिप्पणी:
“हर गिनती में $M\models\mathsf{ZFC}$ कुछ गणनीय का एक सबमॉडल है $N\models\mathsf{ZFC+CH}$" है सच - हम इन गणनीय मॉडल के लिए अच्छी तरह से स्थापित किया जा जरूरत नहीं है यह स्पष्ट नहीं है, लेकिन दिखाने के लिए कठिन नहीं है और में एक अच्छा व्यायाम है!" सभी recursions आंतरिक रूप से चल रहा है "।
हम मनमाने ढंग से मॉडल के विस्तार (और वास्तव में) के बारे में बात कर सकते हैं$V$खुद!) बूलियन-वेल्यूड मॉडल फॉर थ्रू फोल्डिंग के माध्यम से । उदाहरण के लिए, जेच में यह दृष्टिकोण है। हालाँकि, आकर्षक और महत्वपूर्ण यह है कि यह मेरी राय में भी सकारात्मक दृष्टिकोण से काफी कम सहज है।
दूसरा, शैक्षणिक मूल्य के लिए मुझे एक उदाहरण दें जहां महत्व है $G\not\in M$ अधिक स्पष्ट रूप से स्पष्ट है, अर्थात् लेवी पतन $Col(\omega,\omega_1)$।
$Col(\omega,\omega_1)$ बनाने के लिए सबसे सरल मजबूर है $\omega_1$ गणनीय: इसमें परिमित आंशिक कार्य होते हैं $\omega\rightarrow\omega_1$, प्रत्याशित विस्तार द्वारा आदेश के अनुसार। चूंकि प्रत्येक के लिए$\alpha\in\omega_1$ सेट $\{p: \alpha\in ran(p)\}$ घना है, एक सामान्य है $G$ (या यों कहें, ऐसी में शर्तों का संघ $G$) से एक आक्षेप है $\omega$ सेवा $\omega_1$।
अधिक सटीक, और सरलता के लिए गिनती योग्य सकर्मक मॉडल तक सीमित, हमारे पास:
अगर $M$ का एक गणनीय सकर्मक मॉडल है $\mathsf{ZFC}$ तथा $G$ है $Col(\omega,\omega_1^M)$-अनुशासित ओवर $M$ फिर $M[G]\models\omega\equiv\omega_1^M$।
लेकिन इसके विपरीत $\mathsf{CH}$, यह स्पष्ट है कि हम संभवतः "एक ही मॉडल" घटना नहीं कर सकते हैं: कोई भी नहीं है $M\models\mathsf{ZFC}$ ऐसा है कि $M\models \omega\equiv\omega_1^M$। इसलिए इस उदाहरण पर विचार करने से पहले आपको यह देखने में मदद मिल सकती है कि सामान्य रूप से सत्यता की संभावना क्यों नहीं है।
अंत में, मुझे एक सकारात्मक नोट पर समाप्त करने दें। उपरोक्त के बावजूद, कुछ समय ऐसे होते हैं जब किसी वाक्य की "फॉरसेबिलिटी" से इसका स्पष्ट सत्य निकलता है:
Shoenfield की निरपेक्षता प्रमेय का कहना है कि की सच्चाई$\Pi^1_2$ वाक्य मजबूर करके नहीं बदले जा सकते, इसलिए यदि $G$ सामान्य है $M$ तथा $M[G]\models\varphi$ साथ में $\varphi\in\Pi^1_2$ फिर $M\models\varphi$और इसके विपरीत (वास्तव में Shoenfield कुछ हद तक इससे अधिक कहते हैं, लेकिन meh)। लेकिन यह घटना सामान्य रूप से दुर्लभ है।
के विशेष मॉडलों के लिए $\mathsf{ZFC}$हम मजबूत निरपेक्षता परिणाम प्राप्त कर सकते हैं। विशेष रूप से, मजबूत बड़े कार्डिनल स्वयंसिद्ध अधिक से अधिक मात्रा में निरपेक्षता (जैसे अगर मुझे सही ढंग से याद है, अगर$M\models\mathsf{ZFC}$ + "असीम रूप से कई वुडिन कार्डिनल हैं" फिर सभी अनुमानात्मक वाक्य के बीच निरपेक्ष हैं $M$ और इसके सामान्य एक्सटेंशन)।
हालांकि, सामान्य रूप से निरपेक्षता बहुत दुर्लभ है और निश्चित रूप से इसे कभी नहीं लिया जाना चाहिए।