Zeichnen eines Bildes eines diskreten dynamischen Systems
Ich versuche, ein diskretes dynamisches System der Form zu zeichnen $$\vec{x}_{k+1} = A \vec{x}_k$$ wo $A$ ist ein $2\times 2$ Matrix in der Form $$\begin{pmatrix}a&b\\c&d\end{pmatrix}$$ wo $a$, $b$ und $c$sind reelle Zahlen. Es hat einen Anfangswert im Formular$$\begin{pmatrix}e \\f\end{pmatrix}$$
Ich möchte ein Diagramm erstellen, das dem in: Erstellen eines Bildes eines diskreten dynamischen Systems ähnlich ist. Ich bin jedoch nicht in der Lage, die Funktion zu zeichnen, da ich beide VectorPlot
und ListPlot
mit wenig Erfolg ausprobiert habe . Jeder Rat wäre sehr dankbar :-)
Das genaue Problem, an dem ich arbeite, ist: $$\begin{align*} &\vec{x}_k = \begin{pmatrix}2ba-a-b&ba-a-b\\2(a+b-ab)&2(a+b)-ab\end{pmatrix}\vec{x},&\vec{x}_0 = \begin{pmatrix}2\\1/3\end{pmatrix}. \end{align*}$$ Ich betrachte die Diagramme, die durch verschiedene Werte für erstellt wurden $a$ und $b$ sowie $1$ und $1/2$.
Ich habe folgendes versucht:
a = 1; b = 1/2;
A = {{2*b*a-a-b,b*a-a-b},{2(a+b-a*b),2(a+b)-ab}};
x0 = {1, 1/3};
pts = NestList[A.# &, x0, 15];
ListPlot[pts, Joined -> True, AspectRatio -> Automatic]

Antworten
Verwenden Sie die Schieberegler, um Matrixeinträge zu ändern. Klicken und ziehen Sie Locators (kleine Datenträger), um die Anfangspunkte zu ändern. ALT + Klicken, um Locators hinzuzufügen / zu entfernen.
Manipulate[ListLinePlot[Transpose @ NestList[#.{{a, b}, {c, d}} &, pt, 100],
PlotStyle -> PointSize[Medium], PlotRange -> 5 {{-1, 1}, {-1, 1}},
BaseStyle -> Arrowheads[{0., .05, 0.}], AspectRatio -> Automatic,
PlotLegends -> Placed[LineLegend[Defer /@ pt, LegendLabel -> "{x0,y0}",
LegendFunction -> Panel], Right],
Epilog -> {AbsolutePointSize[10],
{ColorData[97]@#, Point@pt[[#]]} & /@ Range[Length[pt]]},
ImageSize -> 400, Frame -> True] /. Line -> Arrow,
Spacer[10], Spacer[10], Spacer[10],
Grid[{{Item[Labeled[Control@{{a, .8, Style["a", 18]}, 0, 1, Slider,
ImageSize -> Small}, Style[Dynamic[a], 20], Top],
Background -> (Dynamic @ ColorData[{"Rainbow", {-1, 1}}][a])],
Item[Labeled[Control@{{b, .0, Style["b", 18]}, -1, 1, Slider,
ImageSize -> Small}, Style[Dynamic[b], 20], Top],
Background -> (Dynamic @ ColorData[{"Rainbow", {-1, 1}}][b])]},
{Item[Labeled[Control@{{c, .0, Style["c", 18]}, -1, 1, Slider,
ImageSize -> Small}, Style[Dynamic[c], 20], Top],
Background -> (Dynamic@ColorData[{"Rainbow", {-1, 1}}][c])],
Item[Labeled[Control@{{d, .4, Style["d", 18]}, 0, 1, Slider,
ImageSize -> Small}, Style[Dynamic[d], 20], Top],
Background -> (Dynamic@ColorData[{"Rainbow", {-1, 1}}][d])]}},
Alignment -> {Center, Center}, ItemSize -> {15, 15}, Dividers -> All],
{{pt, 3 {{1, 1}, {-1, 1}, {1, -1}}}, Locator,
Appearance -> None, LocatorAutoCreate -> {1, 10}},
Alignment -> Center, ControlPlacement -> Left]

Eine alternative Implementierung mit Graphics
:
Manipulate[Legended[Graphics[{AbsolutePointSize[10], ColorData[97]@#,
Arrowheads[.03], Point @ pt[[#]],
Arrow[Partition[NestList[{{a, b}, {c, d}}.# &, pt[[#]], t - 1], 2, 1]]} & /@
Range[Length[pt]],
ImageSize -> 400, Frame -> True, Axes -> True,
PlotRange -> 5 {{-1, 1}, {-1, 1}}],
Placed[LineLegend[ColorData[97] /@ Range[Length @ pt], Defer /@ pt,
LegendLabel -> "{x0,y0}", LegendFunction -> Panel], Right]],
Spacer[10], Spacer[10], Spacer[10],
Grid[{{Item[Labeled[Control @ {{a, .8, Style["a", 18]}, 0, 1, Slider,
ImageSize -> Small}, Style[Dynamic[a], 20], Top],
Background -> (Dynamic @ ColorData[{"Rainbow", {-1, 1}}][a])],
Item[Labeled[Control @ {{b, .0, Style["b", 18]}, -1, 1, Slider,
ImageSize -> Small}, Style[Dynamic[b], 20], Top],
Background -> (Dynamic @ ColorData[{"Rainbow", {-1, 1}}][b])]},
{Item[Labeled[Control @ {{c, .0, Style["c", 18]}, -1, 1, Slider,
ImageSize -> Small}, Style[Dynamic[c], 20], Top],
Background -> (Dynamic @ ColorData[{"Rainbow", {-1, 1}}][c])],
Item[Labeled[Control @ {{d, .4, Style["d", 18]}, 0, 1, Slider,
ImageSize -> Small}, Style[Dynamic[d], 20], Top],
Background -> (Dynamic @ ColorData[{"Rainbow", {-1, 1}}][d])]}},
Alignment -> {Center, Center}, ItemSize -> {16, 16}, Dividers -> All],
{{pt, 3 {{1, 1}, {-1, 1}, {1, -1}}}, Locator,
Appearance -> None, LocatorAutoCreate -> {1, 10}},
Spacer[10],
{{t, 1}, 1, 80, 1, Animator, AnimationRunning -> False, DisplayAllSteps -> True},
Alignment -> Center, ControlPlacement -> Left]

Update: Änderung der zweiten Methode für das Beispiel im OP-Update:
ClearAll [a, b, aA, x0] aA [a_, b_]: = {{2 ab - a - b, ab - a - b}, {2 (a + b - ab), 2 (a + b) - ab}} x0 = {1, 1/3};
Manipulate[Graphics[{AbsolutePointSize[10], ColorData[97]@1, Arrowheads[.03],
Point@x0,
Arrow[Partition[NestList[aA[a, b].# &, x0, t - 1], 2, 1]]},
AspectRatio -> 1, ImageSize -> 400, Frame -> True, Axes -> True,
PlotRange -> All], Spacer[10], Spacer[10], Spacer[10],
Grid[{{Item[Labeled[Control@{{a, 1, Style["a", 18]}, -1, 1, Slider,
ImageSize -> Small}, Style[Dynamic[a], 20], Top],
Background -> (Dynamic@ColorData[{"Rainbow", {-1, 1}}][a])],
Item[Labeled[Control@{{b, .5, Style["b", 18]}, -1, 1, Slider,
ImageSize -> Small}, Style[Dynamic[b], 20], Top],
Background -> (Dynamic@ColorData[{"Rainbow", {-1, 1}}][b])]}},
Alignment -> {Center, Center}, ItemSize -> {16, 16}, Dividers -> All],
Spacer[10],
{{t, 1}, 1, 15, 1, Animator, AnimationRunning -> False, DisplayAllSteps -> True},
Alignment -> Center, ControlPlacement -> Left]

Wenn Sie den Startpunkt mit einem steuern möchten Locator
:
Manipulate[Labeled[Graphics[{AbsolutePointSize[10], ColorData[97]@#,
Arrowheads[.03], Point@pt[[#]],
Arrow[Partition[NestList[aA[a, b].# &, pt[[#]], t - 1], 2, 1]]} & /@
Range[Length[pt]], ImageSize -> 400, Frame -> True,
Axes -> True, PlotRange -> All, AspectRatio -> 1],
Dynamic[pt[[1]]], Top], Spacer[10], Spacer[10], Spacer[10],
Grid[{{Item[Labeled[Control@{{a, 1, Style["a", 18]}, 0, 1, Slider,
ImageSize -> Small}, Style[Dynamic[a], 20], Top],
Background -> (Dynamic@ColorData[{"Rainbow", {-1, 1}}][a])],
Item[Labeled[Control@{{b, .5, Style["b", 18]}, -1, 1, Slider,
ImageSize -> Small}, Style[Dynamic[b], 20], Top],
Background -> (Dynamic@ColorData[{"Rainbow", {-1, 1}}][b])]}},
Alignment -> {Center, Center}, ItemSize -> {16, 16}, Dividers -> All],
{{pt, {x0}}, Locator, Appearance -> None, LocatorAutoCreate -> False},
Spacer[10],
{{t, 1}, 1, 15, 1, Animator, AnimationRunning -> False, DisplayAllSteps -> True},
Alignment -> Center, ControlPlacement -> Left]

Bearbeiten
Wir können ändern x0
durch Locator
und verändern {a,b}
durch Slide2D
.
A[{a_, b_}] := {{2*b*a - a - b, b*a - a - b}, {2 (a + b - a*b),
2 (a + b) - a*b}};
Manipulate[
ListPlot[NestList[A[ab] . # &, x0, 15], Joined -> True,
PlotRange -> {{-10, 10}, {-10, 10}},
AspectRatio -> 1], {{ab, {1, 1/2},
Dynamic["{a,b}=" <>
ToString[ab, TraditionalForm]]}, {.8, .4}, {1.2, .6}},
Dynamic["x0=" <> ToString[x0, TraditionalForm]], {{x0, {2, 1/3}},
Locator}, ControlPlacement -> Right]
Original
A = {{Cos[π/3], -Sin[π/3] - .1}, {Sin[π/3], Cos[π/3]}};
x0 = {1, 1};
pts = NestList[A . # &, x0, 15];
ListPlot[pts, Joined -> True, AspectRatio -> Automatic]

Oder
A = {{Cos[π/3], -Sin[π/3] - .1}, {Sin[π/3], Cos[π/3]}};
x0 = {1, 1};
pts = NestList[A . # &, x0, 15];
Graphics[Arrow[Partition[pts, 2, 1]]]
