Kolom duplikat di Julia Dataframes

Aug 25 2020

Dalam Python Pandas dan R, seseorang dapat dengan mudah menyingkirkan kolom duplikat - cukup muat datanya, tetapkan nama kolom, dan pilih yang tidak diduplikasi.

Apa praktik terbaik untuk menangani data semacam itu dengan Julia Dataframes? Menetapkan nama kolom duplikat tidak diperbolehkan di sini. Saya mengerti bahwa satu-satunya cara adalah memijat data yang masuk lebih banyak, dan menyingkirkan data semacam itu sebelum membangun Dataframe?

Masalahnya adalah hampir selalu lebih mudah untuk menangani kolom duplikat dalam kerangka data yang sudah dibuat, daripada dalam data yang masuk.

UPD: Maksud saya nama kolom yang digandakan. Saya membangun kerangka data dari data mentah, di mana nama kolom (dan dengan demikian data) dapat diulang.

UPD2: Contoh Python ditambahkan.

>>> import numpy as np
>>> import pandas as pd
>>> df = pd.DataFrame(np.hstack([np.zeros((4,1)), np.ones((4,2))]), columns=["a", "b", "b"])
>>> df
     a    b    b
0  0.0  1.0  1.0
1  0.0  1.0  1.0
2  0.0  1.0  1.0
3  0.0  1.0  1.0
>>> df.loc[:, ~df.columns.duplicated()]
     a    b
0  0.0  1.0
1  0.0  1.0
2  0.0  1.0
3  0.0  1.0

Saya membangun Julia Dataframe dari matriks Float32 dan kemudian menetapkan nama kolom dari vektor. Di situlah saya perlu menyingkirkan kolom yang memiliki nama duplikat (sudah ada di dataframe). Itulah sifat dasar data, kadang ada dups, kadang tidak, saya tidak punya kendali atas pembuatannya.

Jawaban

2 BogumiłKamiński Aug 24 2020 at 23:38

Apakah ini sesuatu yang Anda cari (saya tidak 100% yakin dengan uraian Anda - jika ini bukan yang Anda inginkan, harap perbarui pertanyaan dengan sebuah contoh):

julia> df = DataFrame([zeros(4,3) ones(4,5)])
4×8 DataFrame
│ Row │ x1      │ x2      │ x3      │ x4      │ x5      │ x6      │ x7      │ x8      │
│     │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │ Float64 │
├─────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┼─────────┤
│ 1   │ 0.0     │ 0.0     │ 0.0     │ 1.0     │ 1.0     │ 1.0     │ 1.0     │ 1.0     │
│ 2   │ 0.0     │ 0.0     │ 0.0     │ 1.0     │ 1.0     │ 1.0     │ 1.0     │ 1.0     │
│ 3   │ 0.0     │ 0.0     │ 0.0     │ 1.0     │ 1.0     │ 1.0     │ 1.0     │ 1.0     │
│ 4   │ 0.0     │ 0.0     │ 0.0     │ 1.0     │ 1.0     │ 1.0     │ 1.0     │ 1.0     │

julia> DataFrame(unique(last, pairs(eachcol(df))))
4×2 DataFrame
│ Row │ x1      │ x4      │
│     │ Float64 │ Float64 │
├─────┼─────────┼─────────┤
│ 1   │ 0.0     │ 1.0     │
│ 2   │ 0.0     │ 1.0     │
│ 3   │ 0.0     │ 1.0     │
│ 4   │ 0.0     │ 1.0     │

EDIT

Untuk menghapus duplikat nama kolom, gunakan makeuniqueargumen kata kunci:

julia> DataFrame(rand(3,4), [:x, :x, :x, :x], makeunique=true)
3×4 DataFrame
│ Row │ x         │ x_1      │ x_2      │ x_3       │
│     │ Float64   │ Float64  │ Float64  │ Float64   │
├─────┼───────────┼──────────┼──────────┼───────────┤
│ 1   │ 0.410494  │ 0.775563 │ 0.819916 │ 0.0520466 │
│ 2   │ 0.0503997 │ 0.427499 │ 0.262234 │ 0.965793  │
│ 3   │ 0.838595  │ 0.996305 │ 0.833607 │ 0.953539  │

EDIT 2

Jadi, Anda tampaknya memiliki akses ke nama kolom saat membuat bingkai data. Dalam hal ini saya akan melakukan:

julia> mat = [ones(3,1) zeros(3,2)]
3×3 Array{Float64,2}:
 1.0  0.0  0.0
 1.0  0.0  0.0
 1.0  0.0  0.0

julia> cols = ["a", "b", "b"]
3-element Array{String,1}:
 "a"
 "b"
 "b"

julia> df = DataFrame(mat, cols, makeunique=true)
3×3 DataFrame
│ Row │ a       │ b       │ b_1     │
│     │ Float64 │ Float64 │ Float64 │
├─────┼─────────┼─────────┼─────────┤
│ 1   │ 1.0     │ 0.0     │ 0.0     │
│ 2   │ 1.0     │ 0.0     │ 0.0     │
│ 3   │ 1.0     │ 0.0     │ 0.0     │

julia> select!(df, unique(cols))
3×2 DataFrame
│ Row │ a       │ b       │
│     │ Float64 │ Float64 │
├─────┼─────────┼─────────┤
│ 1   │ 1.0     │ 0.0     │
│ 2   │ 1.0     │ 0.0     │
│ 3   │ 1.0     │ 0.0     │