¿Cómo saber si son iguales?

Aug 17 2020

En el artículo de wikipedia para la ecuación cúbica , la raíz se puede obtener mediante:

$-\frac{1}{3a}(b+C+\frac{\Delta_0}{C})$

Dónde $\Delta_0=b^2-3ac$ y $C=\sqrt[3]{\frac{\Delta_1\pm\sqrt{\Delta_1^2-4\Delta_0^3}}{2}}$. También,$\Delta_1=2b^3-9abc+27a^2d$.

En otro sitio web , hay otra solución raíz:

$$\sqrt[3]{(-\frac{b^3}{27a^3}+\frac{bc}{6a^2}-\frac{d}{2a})+\sqrt{(-\frac{b^3}{27a^3}+\frac{bc}{6a^2}-\frac{d}{2a})^2+(\frac{c}{3a}-\frac{b^2}{9a^2})^3}}+\sqrt[3]{(-\frac{b^3}{27a^3}+\frac{bc}{6a^2}-\frac{d}{2a})-\sqrt{(-\frac{b^3}{27a^3}+\frac{bc}{6a^2}-\frac{d}{2a})^2+(\frac{c}{3a}-\frac{b^2}{9a^2})^3}}-\frac{b}{3a}$$

He puesto este último en Wolphram | Alpha para evaluarlo. la$\Delta_1$se puede ver en él; pero no tengo idea de cómo averiguarlo y la solución anterior es la misma.

Respuestas

3 AndyWalls Aug 24 2020 at 03:02

Definir:

$$\begin{align*} x_N &= -\dfrac{b}{3a} \quad \text{(average of all 3 roots, x-value of inflection point)} \\ \\ \delta^2 &= \dfrac{b^2-3ac}{9a^2} \quad \mathrm{(x \; distance^2 \; from \;} x_N \; \text{to the 2 turning points)}\\ \\ y_N &= f(x_N) = \dfrac{2b^3}{27a^2}-\dfrac{bc}{3a} +d \quad \text{(y-value of inflection point)}\\ \\ h &= 2a\delta^3 \quad \mathrm{(y \; distance \; from \;} y_N \; \text{to the 2 turning points)} \\ \end{align*}$$

(Consulte la figura 1 en este documento de Nickalls: http://www.nickalls.org/dick/papers/maths/cubic1993.pdf)

La segunda expresión que presentó se puede escribir como

$$x_N + \sqrt[3]{\dfrac{1}{2a}\left(-y_N + \sqrt{y_N^2 - h^2}\right) } + \sqrt[3]{\dfrac{1}{2a}\left(-y_N - \sqrt{y_N^2 - h^2}\right) } $$

o por $h \ne 0$,

$$x_N + \delta\left(\sqrt[3]{\dfrac{-y_N}{h} + \sqrt{\dfrac{y_N^2}{h^2} - 1 }} + \sqrt[3]{\dfrac{-y_N}{h} - \sqrt{\dfrac{y_N^2}{h^2} - 1 }} \right) $$

En la primera expresión que presentó, tenemos

$$\begin{align*} \Delta_0 & = 9a^2 \delta^2 \\ \\ \Delta_1 &= 27a^2 y_N \\ \\ C &= -3a \sqrt[3]{\dfrac{1}{2a}\left(-y_N \mp \sqrt{y_N^2 - h^2}\right) }\\ \end{align*}$$

para que esa expresión se convierta

$$ x_N + \sqrt[3]{\dfrac{1}{2a}\left(-y_N + \sqrt{y_N^2 - h^2}\right) } + \dfrac{\delta^2}{\sqrt[3]{\dfrac{1}{2a}\left(-y_N + \sqrt{y_N^2 - h^2}\right) }}$$

o por $h \ne 0$,

$$x_N + \delta\left(\sqrt[3]{\dfrac{-y_N}{h} + \sqrt{\dfrac{y_N^2}{h^2} - 1 }} + \dfrac{1}{\sqrt[3]{\dfrac{-y_N}{h} + \sqrt{\dfrac{y_N^2}{h^2} - 1 }} }\right) $$

que luego de multiplicar el numerador y denominador de ese último término entre paréntesis por $$\sqrt[3]{\dfrac{-y_N}{h} - \sqrt{\dfrac{y_N^2}{h^2} - 1 }}$$

se convierte en

$$x_N + \delta\left(\sqrt[3]{\dfrac{-y_N}{h} + \sqrt{\dfrac{y_N^2}{h^2} - 1 }} + \sqrt[3]{\dfrac{-y_N}{h} - \sqrt{\dfrac{y_N^2}{h^2} - 1 }} \right) $$

Entonces sí, de hecho, esas dos expresiones para las raíces del cúbico que encontraste son equivalentes.

Ahora te animo a que deseches toda esa solución clásica para las raíces de un cúbico y, en su lugar, aprendas el enfoque de Nickalls presentado por Nickalls y desarrollado por Holmes:

http://www.nickalls.org/dick/papers/maths/cubic1993.pdf

https://users.math.msu.edu/users/newhous7/math_235/lectures/cubic_gc_holmes.pdf