¿Cómo pivotar un marco de datos?
- ¿Qué es pivote?
- ¿Cómo giro?
- ¿Es esto un pivote?
- ¿Formato largo a formato ancho?
He visto muchas preguntas sobre tablas dinámicas. Incluso si no saben que están preguntando sobre tablas dinámicas, por lo general lo están. Es virtualmente imposible escribir una pregunta canónica y una respuesta que abarque todos los aspectos de pivotar ...
... Pero voy a intentarlo.
El problema con las preguntas y respuestas existentes es que a menudo la pregunta se centra en un matiz que el OP tiene problemas para generalizar para utilizar varias de las buenas respuestas existentes. Sin embargo, ninguna de las respuestas intenta dar una explicación completa (porque es una tarea desalentadora)
Mira algunos ejemplos de mi búsqueda de Google
- Buena pregunta y respuesta. Pero la respuesta solo responde a la pregunta específica con poca explicación.
- En esta pregunta, el OP se ocupa de la salida del pivote. Es decir, cómo se ven las columnas. OP quería que se pareciera a R. Esto no es muy útil para los usuarios de pandas.
- Otra pregunta decente, pero la respuesta se centra en un método, a saber
pd.DataFrame.pivot
Entonces, cada vez que alguien busca pivot
, obtiene resultados esporádicos que probablemente no responderán a su pregunta específica.
Preparar
Puede notar que llamé visiblemente a mis columnas y valores de columna relevantes para que se correspondan con la forma en que voy a girar en las respuestas a continuación.
import numpy as np
import pandas as pd
from numpy.core.defchararray import add
np.random.seed([3,1415])
n = 20
cols = np.array(['key', 'row', 'item', 'col'])
arr1 = (np.random.randint(5, size=(n, 4)) // [2, 1, 2, 1]).astype(str)
df = pd.DataFrame(
add(cols, arr1), columns=cols
).join(
pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val')
)
print(df)
key row item col val0 val1
0 key0 row3 item1 col3 0.81 0.04
1 key1 row2 item1 col2 0.44 0.07
2 key1 row0 item1 col0 0.77 0.01
3 key0 row4 item0 col2 0.15 0.59
4 key1 row0 item2 col1 0.81 0.64
5 key1 row2 item2 col4 0.13 0.88
6 key2 row4 item1 col3 0.88 0.39
7 key1 row4 item1 col1 0.10 0.07
8 key1 row0 item2 col4 0.65 0.02
9 key1 row2 item0 col2 0.35 0.61
10 key2 row0 item2 col1 0.40 0.85
11 key2 row4 item1 col2 0.64 0.25
12 key0 row2 item2 col3 0.50 0.44
13 key0 row4 item1 col4 0.24 0.46
14 key1 row3 item2 col3 0.28 0.11
15 key0 row3 item1 col1 0.31 0.23
16 key0 row0 item2 col3 0.86 0.01
17 key0 row4 item0 col3 0.64 0.21
18 key2 row2 item2 col0 0.13 0.45
19 key0 row2 item0 col4 0.37 0.70
Pregunta (s)
¿Por qué consigo
ValueError: Index contains duplicate entries, cannot reshape
¿Cómo giro de
df
manera que loscol
valores sean columnas, losrow
valores sean el índice y la media deval0
los valores?col col0 col1 col2 col3 col4 row row0 0.77 0.605 NaN 0.860 0.65 row2 0.13 NaN 0.395 0.500 0.25 row3 NaN 0.310 NaN 0.545 NaN row4 NaN 0.100 0.395 0.760 0.24
¿Cómo giro de
df
manera que loscol
valores sean columnas, losrow
valores sean el índice, la media deval0
los valores y los valores faltantes0
?col col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 row2 0.13 0.000 0.395 0.500 0.25 row3 0.00 0.310 0.000 0.545 0.00 row4 0.00 0.100 0.395 0.760 0.24
¿Puedo conseguir algo más que
mean
tal vezsum
?col col0 col1 col2 col3 col4 row row0 0.77 1.21 0.00 0.86 0.65 row2 0.13 0.00 0.79 0.50 0.50 row3 0.00 0.31 0.00 1.09 0.00 row4 0.00 0.10 0.79 1.52 0.24
¿Puedo hacer más de una agregación a la vez?
sum mean col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 0.77 1.21 0.00 0.86 0.65 0.77 0.605 0.000 0.860 0.65 row2 0.13 0.00 0.79 0.50 0.50 0.13 0.000 0.395 0.500 0.25 row3 0.00 0.31 0.00 1.09 0.00 0.00 0.310 0.000 0.545 0.00 row4 0.00 0.10 0.79 1.52 0.24 0.00 0.100 0.395 0.760 0.24
¿Puedo agregar sobre múltiples columnas de valor?
val0 val1 col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 0.01 0.745 0.00 0.010 0.02 row2 0.13 0.000 0.395 0.500 0.25 0.45 0.000 0.34 0.440 0.79 row3 0.00 0.310 0.000 0.545 0.00 0.00 0.230 0.00 0.075 0.00 row4 0.00 0.100 0.395 0.760 0.24 0.00 0.070 0.42 0.300 0.46
¿Se puede subdividir por varias columnas?
item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 row row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.605 0.86 0.65 row2 0.35 0.00 0.37 0.00 0.00 0.44 0.00 0.00 0.13 0.000 0.50 0.13 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.000 0.28 0.00 row4 0.15 0.64 0.00 0.00 0.10 0.64 0.88 0.24 0.00 0.000 0.00 0.00
O
item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 key row key0 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 row2 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.00 0.00 0.00 row4 0.15 0.64 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 key1 row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.65 row2 0.35 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.13 row3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 row4 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 key2 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 row2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 row4 0.00 0.00 0.00 0.00 0.00 0.64 0.88 0.00 0.00 0.00 0.00 0.00
¿Puedo agregar la frecuencia con la que la columna y las filas aparecen juntas, también conocida como "tabulación cruzada"?
col col0 col1 col2 col3 col4 row row0 1 2 0 1 1 row2 1 0 2 1 2 row3 0 1 0 2 0 row4 0 1 2 2 1
¿Cómo convierto un DataFrame de largo a ancho girando SOLO en dos columnas? Dado,
np.random.seed([3, 1415]) df2 = pd.DataFrame({'A': list('aaaabbbc'), 'B': np.random.choice(15, 8)}) df2 A B 0 a 0 1 a 11 2 a 2 3 a 11 4 b 10 5 b 10 6 b 14 7 c 7
Lo esperado debería verse algo así como
a b c 0 0.0 10.0 7.0 1 11.0 10.0 NaN 2 2.0 14.0 NaN 3 11.0 NaN NaN
¿Cómo puedo aplanar el índice múltiple a índice único después
pivot
Desde
1 2 1 1 2 a 2 1 1 b 2 1 0 c 1 0 0
A
1|1 2|1 2|2 a 2 1 1 b 2 1 0 c 1 0 0
Respuestas
Comenzamos respondiendo la primera pregunta:
Pregunta 1
¿Por qué consigo
ValueError: Index contains duplicate entries, cannot reshape
Esto ocurre porque pandas está intentando volver a indexar un objeto columns
u index
con entradas duplicadas. Hay varios métodos a utilizar que pueden realizar un pivote. Algunos de ellos no son adecuados para cuando hay duplicados de las claves en las que se le pide que gire. Por ejemplo. Considere pd.DataFrame.pivot
. Sé que hay entradas duplicadas que comparten los valores row
y col
:
df.duplicated(['row', 'col']).any()
True
Entonces, cuando pivot
uso
df.pivot(index='row', columns='col', values='val0')
Recibo el error mencionado anteriormente. De hecho, obtengo el mismo error cuando intento realizar la misma tarea con:
df.set_index(['row', 'col'])['val0'].unstack()
Aquí hay una lista de modismos que podemos usar para pivotar
pd.DataFrame.groupby
+pd.DataFrame.unstack
- Buen enfoque general para realizar casi cualquier tipo de pivote
- Especifique todas las columnas que constituirán los niveles de fila pivotada y los niveles de columna en un grupo por. Lo sigue seleccionando las columnas restantes que desea agregar y las funciones que desea realizar la agregación. Finalmente, tienes
unstack
los niveles que quieres que estén en el índice de la columna.
pd.DataFrame.pivot_table
- Una versión glorificada de
groupby
con una API más intuitiva. Para muchas personas, este es el enfoque preferido. Y es el enfoque previsto por los desarrolladores. - Especifique el nivel de fila, los niveles de columna, los valores que se agregarán y las funciones para realizar agregaciones.
- Una versión glorificada de
pd.DataFrame.set_index
+pd.DataFrame.unstack
- Conveniente e intuitivo para algunos (incluido yo mismo). No se pueden manejar claves agrupadas duplicadas.
- De manera similar al
groupby
paradigma, especificamos todas las columnas que eventualmente serán niveles de fila o columna y las establecemos como índice. Seguimosunstack
los niveles que queramos en las columnas. Si los niveles de índice o de columna restantes no son únicos, este método fallará.
pd.DataFrame.pivot
- Muy similar a
set_index
que comparte la limitación de clave duplicada. La API también es muy limitada. Sólo toma valores escalares paraindex
,columns
,values
. - Similar al
pivot_table
método en que seleccionamos filas, columnas y valores sobre los cuales pivotar. Sin embargo, no podemos agregar y si las filas o columnas no son únicas, este método fallará.
- Muy similar a
pd.crosstab
- Esta es una versión especializada
pivot_table
y en su forma más pura es la forma más intuitiva de realizar varias tareas.
- Esta es una versión especializada
pd.factorize
+np.bincount
- Esta es una técnica muy avanzada que es muy oscura pero muy rápida. No se puede usar en todas las circunstancias, pero cuando se pueda usar y se sienta cómodo usándolo, obtendrá las recompensas de rendimiento.
pd.get_dummies
+pd.DataFrame.dot
- Lo uso para realizar tabulaciones cruzadas de forma inteligente.
Ejemplos
Lo que voy a hacer para cada respuesta y pregunta subsiguientes es responder usando pd.DataFrame.pivot_table
. Luego te brindaré alternativas para realizar la misma tarea.
Pregunta 3
¿Cómo giro de
df
manera que loscol
valores sean columnas, losrow
valores sean el índice, la media deval0
los valores y los valores faltantes0
?
pd.DataFrame.pivot_table
fill_value
no está configurado de forma predeterminada. Tiendo a configurarlo apropiadamente. En este caso lo configuré en0
. Observe que me salté la pregunta 2 porque es la misma que esta respuesta sin lafill_value
aggfunc='mean'
es el predeterminado y no tuve que configurarlo. Lo incluí para ser explícito.df.pivot_table( values='val0', index='row', columns='col', fill_value=0, aggfunc='mean') col col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 row2 0.13 0.000 0.395 0.500 0.25 row3 0.00 0.310 0.000 0.545 0.00 row4 0.00 0.100 0.395 0.760 0.24
pd.DataFrame.groupby
df.groupby(['row', 'col'])['val0'].mean().unstack(fill_value=0)
pd.crosstab
pd.crosstab( index=df['row'], columns=df['col'], values=df['val0'], aggfunc='mean').fillna(0)
Pregunta 4
¿Puedo conseguir algo más que
mean
tal vezsum
?
pd.DataFrame.pivot_table
df.pivot_table( values='val0', index='row', columns='col', fill_value=0, aggfunc='sum') col col0 col1 col2 col3 col4 row row0 0.77 1.21 0.00 0.86 0.65 row2 0.13 0.00 0.79 0.50 0.50 row3 0.00 0.31 0.00 1.09 0.00 row4 0.00 0.10 0.79 1.52 0.24
pd.DataFrame.groupby
df.groupby(['row', 'col'])['val0'].sum().unstack(fill_value=0)
pd.crosstab
pd.crosstab( index=df['row'], columns=df['col'], values=df['val0'], aggfunc='sum').fillna(0)
Pregunta 5
¿Puedo hacer más de una agregación a la vez?
Tenga en cuenta que para pivot_table
y crosstab
yo tenía que pasar la lista de llamadas. Por otro lado, groupby.agg
es capaz de tomar cadenas para un número limitado de funciones especiales. groupby.agg
también habría tomado los mismos invocables que pasamos a los demás, pero a menudo es más eficiente aprovechar los nombres de las funciones de cadena ya que hay eficiencias que se pueden obtener.
pd.DataFrame.pivot_table
df.pivot_table( values='val0', index='row', columns='col', fill_value=0, aggfunc=[np.size, np.mean]) size mean col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 1 2 0 1 1 0.77 0.605 0.000 0.860 0.65 row2 1 0 2 1 2 0.13 0.000 0.395 0.500 0.25 row3 0 1 0 2 0 0.00 0.310 0.000 0.545 0.00 row4 0 1 2 2 1 0.00 0.100 0.395 0.760 0.24
pd.DataFrame.groupby
df.groupby(['row', 'col'])['val0'].agg(['size', 'mean']).unstack(fill_value=0)
pd.crosstab
pd.crosstab( index=df['row'], columns=df['col'], values=df['val0'], aggfunc=[np.size, np.mean]).fillna(0, downcast='infer')
Pregunta 6
¿Puedo agregar sobre múltiples columnas de valor?
pd.DataFrame.pivot_table
pasamosvalues=['val0', 'val1']
pero podríamos haber dejado eso completamentedf.pivot_table( values=['val0', 'val1'], index='row', columns='col', fill_value=0, aggfunc='mean') val0 val1 col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 0.01 0.745 0.00 0.010 0.02 row2 0.13 0.000 0.395 0.500 0.25 0.45 0.000 0.34 0.440 0.79 row3 0.00 0.310 0.000 0.545 0.00 0.00 0.230 0.00 0.075 0.00 row4 0.00 0.100 0.395 0.760 0.24 0.00 0.070 0.42 0.300 0.46
pd.DataFrame.groupby
df.groupby(['row', 'col'])['val0', 'val1'].mean().unstack(fill_value=0)
Pregunta 7
¿Se puede subdividir por varias columnas?
pd.DataFrame.pivot_table
df.pivot_table( values='val0', index='row', columns=['item', 'col'], fill_value=0, aggfunc='mean') item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 row row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.605 0.86 0.65 row2 0.35 0.00 0.37 0.00 0.00 0.44 0.00 0.00 0.13 0.000 0.50 0.13 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.000 0.28 0.00 row4 0.15 0.64 0.00 0.00 0.10 0.64 0.88 0.24 0.00 0.000 0.00 0.00
pd.DataFrame.groupby
df.groupby( ['row', 'item', 'col'] )['val0'].mean().unstack(['item', 'col']).fillna(0).sort_index(1)
Pregunta 8
¿Se puede subdividir por varias columnas?
pd.DataFrame.pivot_table
df.pivot_table( values='val0', index=['key', 'row'], columns=['item', 'col'], fill_value=0, aggfunc='mean') item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 key row key0 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 row2 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.00 0.00 0.00 row4 0.15 0.64 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 key1 row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.65 row2 0.35 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.13 row3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 row4 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 key2 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 row2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 row4 0.00 0.00 0.00 0.00 0.00 0.64 0.88 0.00 0.00 0.00 0.00 0.00
pd.DataFrame.groupby
df.groupby( ['key', 'row', 'item', 'col'] )['val0'].mean().unstack(['item', 'col']).fillna(0).sort_index(1)
pd.DataFrame.set_index
porque el conjunto de claves es único tanto para filas como para columnasdf.set_index( ['key', 'row', 'item', 'col'] )['val0'].unstack(['item', 'col']).fillna(0).sort_index(1)
Pregunta 9
¿Puedo agregar la frecuencia con la que la columna y las filas aparecen juntas, también conocida como "tabulación cruzada"?
pd.DataFrame.pivot_table
df.pivot_table(index='row', columns='col', fill_value=0, aggfunc='size') col col0 col1 col2 col3 col4 row row0 1 2 0 1 1 row2 1 0 2 1 2 row3 0 1 0 2 0 row4 0 1 2 2 1
pd.DataFrame.groupby
df.groupby(['row', 'col'])['val0'].size().unstack(fill_value=0)
pd.crosstab
pd.crosstab(df['row'], df['col'])
pd.factorize
+np.bincount
# get integer factorization `i` and unique values `r` # for column `'row'` i, r = pd.factorize(df['row'].values) # get integer factorization `j` and unique values `c` # for column `'col'` j, c = pd.factorize(df['col'].values) # `n` will be the number of rows # `m` will be the number of columns n, m = r.size, c.size # `i * m + j` is a clever way of counting the # factorization bins assuming a flat array of length # `n * m`. Which is why we subsequently reshape as `(n, m)` b = np.bincount(i * m + j, minlength=n * m).reshape(n, m) # BTW, whenever I read this, I think 'Bean, Rice, and Cheese' pd.DataFrame(b, r, c) col3 col2 col0 col1 col4 row3 2 0 0 1 0 row2 1 2 1 0 2 row0 1 0 1 2 1 row4 2 2 0 1 1
pd.get_dummies
pd.get_dummies(df['row']).T.dot(pd.get_dummies(df['col'])) col0 col1 col2 col3 col4 row0 1 2 0 1 1 row2 1 0 2 1 2 row3 0 1 0 2 0 row4 0 1 2 2 1
Pregunta 10
¿Cómo convierto un DataFrame de largo a ancho girando SOLO en dos columnas?
El primer paso es asignar un número a cada fila; este número será el índice de fila de ese valor en el resultado pivotado. Esto se hace usando GroupBy.cumcount
:
df2.insert(0, 'count', df.groupby('A').cumcount())
df2
count A B
0 0 a 0
1 1 a 11
2 2 a 2
3 3 a 11
4 0 b 10
5 1 b 10
6 2 b 14
7 0 c 7
El segundo paso es utilizar la columna recién creada como índice para llamar DataFrame.pivot
.
df2.pivot(*df)
# df.pivot(index='count', columns='A', values='B')
A a b c
count
0 0.0 10.0 7.0
1 11.0 10.0 NaN
2 2.0 14.0 NaN
3 11.0 NaN NaN
Pregunta 11
¿Cómo puedo aplanar el índice múltiple a índice único después
pivot
Si columns
escribe object
con cadenajoin
df.columns = df.columns.map('|'.join)
más format
df.columns = df.columns.map('{0[0]}|{0[1]}'.format)
Para extender la respuesta de @ piRSquared, otra versión de la Pregunta 10
Pregunta 10.1
Marco de datos:
d = data = {'A': {0: 1, 1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 5},
'B': {0: 'a', 1: 'b', 2: 'c', 3: 'a', 4: 'b', 5: 'a', 6: 'c'}}
df = pd.DataFrame(d)
A B
0 1 a
1 1 b
2 1 c
3 2 a
4 2 b
5 3 a
6 5 c
Salida:
0 1 2
A
1 a b c
2 a b None
3 a None None
5 c None None
Usando df.groupby
ypd.Series.tolist
t = df.groupby('A')['B'].apply(list)
out = pd.DataFrame(t.tolist(),index=t.index)
out
0 1 2
A
1 a b c
2 a b None
3 a None None
5 c None None
O una alternativa mucho mejor usando pd.pivot_table
condf.squeeze.
t = df.pivot_table(index='A',values='B',aggfunc=list).squeeze()
out = pd.DataFrame(t.tolist(),index=t.index)