¿Cuál es la matriz de logaritmo del operador derivado ( $\ln D$)? ¿Cuál es el papel de este operador en varios campos matemáticos?
Babusci y Dattoli, en el logaritmo del operador derivado , arXiv: 1105.5978 , da excelentes resultados:\begin{align*} (\ln D) 1 & {}= -\ln x -\gamma \\ (\ln D) x^n & {}= x^n (\psi (n+1)-\ln x) \\ (\ln D) \ln x & {}= -\zeta(2) -(\gamma+\ln x)\ln x. \end{align*} Me pregunto, ¿cuál es su matriz, o de lo contrario, hay algún método para aplicarla a una función?
¿Cuál es su papel intuitivo en varios campos de las matemáticas?
Respuestas
Tras la transformación de Fourier $x\mapsto k$, esto se convierte en un operador diagonal con elementos matriciales $\langle k|\ln D|k'\rangle=2\pi \delta(k-k')\ln k$. Entonces, para encontrar los elementos de la matriz en el$x$-representación necesitaríamos invertir la transformada de Fourier del logaritmo $\ln k$. De esta respuesta MSE para la transformada de Fourier de$\ln |k|$ (con signos de valor absoluto) Concluiría que $$\langle x|\ln D|x'\rangle=\left(\frac{i \pi}{2}-\gamma\right) \delta (x-x')+\text{P.V.}\left(\frac{1}{2 (x-x')}-\frac{1}{2 | x-x'| }\right).$$
Esta notación significa que $\ln D$ actuando en una función $f(x)$ produce una nueva función $g(x)$ dada por $$g(x)=\int_{-\infty}^\infty \left[\left(\frac{i \pi}{2}-\gamma\right) \delta (x-x')+\text{P.V.}\left(\frac{1}{2 (x-x')}-\frac{1}{2 | x-x'| }\right)\right]f(x')\,dx'$$ $$=\left(\frac{i \pi}{2}-\gamma\right) f(x)+\frac{1}{2}\,\text{P.V.}\int_{-\infty}^\infty \left(\frac{1}{x-x'}-\frac{1}{| x-x'| }\right)\,f(x')\,dx'.$$
La interpretación de un $\ln(D)$ depende de la interpolación que se elija del operador derivado habitual y sus potencias enteras positivas a un operador integro-derivativo fraccional (FID), es decir, una interpretación de $D$exponenciado por cualquier número real (o número complejo a través de la continuación analítica), que a su vez, depende de las funciones sobre las que actuará el FID. La extensión descrita a continuación produce tres identidades B & D y es consistente con las propiedades que Pincherle impuso a cualquier familia legítima de FID (vea este MO-Q en una derivada 1/2 y este MO-Q en cálculo fraccional ). Puede ser definido por la acción sobre un 'conjunto básico' de funciones completas en la variable compleja$\omega$ como
$$D_x^{\alpha} \; H(x) \; \frac{x^{\omega}}{\omega!} = H(x) \frac{x^{\omega-\alpha}}{(\omega-\alpha)!} ,$$
dónde $H(x)$ es la función escalón Heaviside, y $\alpha$ y $\omega$ puede ser cualquier número complejo con la identificación habitual en la teoría de funciones generalizadas y distribuciones de
$$(-1)^n \delta^{(n)}(x) = H(x) \frac{x^{-n-1}}{(-n-1)!},$$
con $n=0,1,2,3,...$.
Tenga en cuenta que esto tiene poco que ver con una transformada de Fourier sobre la línea real o cualquier pseudo-diff op / símbolo asociado con tal. En particular,$D^{\alpha}$ aquí NO está asociado con la multiplicación por $(i 2 \pi f)^{\alpha}$en el espacio de frecuencias. En otra parte, muestro varias repeticiones convolucionales equivalentes de este FID como 1) un FT sobre un círculo a través de una transformación de una integral de contorno del complejo de Cauchy regularizada, 2) la continuación analítica de la representación integral de la función beta de Euler, ya sea a través de una explosión en el plano complejo de la integral a lo largo del segmento de línea real o regularización mediante la parte finita de Hadamard o mediante el contorno de Pochhammer, 3) la interpolación de Mellin del operador derivado estándar mediante la acción de la función generadora$e^{tD_x}$, una aplicación de operador de la fórmula maestra de Ramanujan, o 4) una interpolación de función sinc / serie cardinal de los coeficientes binomiales generalizados.
Veamos qué tan viable es la definición anterior de FID; su conexión a un generador infinitesimal (infinigen) del FID y las tres identidades B & D; una conexión con el formalismo de las secuencias polinomiales de Appell Sheffer y, por lo tanto, la teoría simétrica de polinomios / funciones; y representantes de matriz del infinigen y FID.
Si asumimos que un generador infinitesimal $IG$ existe tal que
$$ e^{\alpha \; IG} \; H(x) \; \frac{x^{\omega}}{\omega!} = D_x^{\alpha} \; H(x) \; \frac{x^{\omega}}{\omega!} = H(x) \frac{x^{\omega-\alpha}}{(\omega-\alpha)!} = e^{-\alpha D_{\omega}} \; H(x) \; \frac{x^{\omega}}{\omega!},$$
luego formalmente
$$D_{\alpha} \; e^{\alpha IG} \; H(x) \; \frac{x^{\omega}}{\omega!} |_{\alpha =0} = IG \; H(x) \; \frac{x^{\omega}}{\omega!} = \ln(D_x) \; H(x) \; \frac{x^{\omega}}{\omega!}$$
$$ = D_{\alpha} \; H(x) \; \frac{x^{\omega-\alpha}}{(\omega-\alpha)!} |_{\alpha =0} = -D_{\omega} \;\frac{x^{\omega}}{\omega!}$$
$$ = [\; -\ln(x) + \psi(1+\omega) \;] H(x) \; \frac{x^{\omega}}{\omega!} $$
$$ = [ \; -\ln(x) + \psi(1+xD_x) \;] \; H(x) \; \frac{x^{\omega}}{\omega!}, $$
y el infinigen es
$$ \ln(D_x) := IG = -\ln(x) + \psi(1+xD_x),$$
dónde $\psi(x)$ es la función digamma, que se puede definir sobre el plano complejo como una función meromórfica y está íntimamente relacionada con los valores de la función zeta de Riemann en $s = 2,3,4,...$.
Algunas repeticiones (que dan las mismas identidades que en B y D) son
$$IG \; f(x)=\frac{1}{2\pi i}\oint_{|z-x|=|x|}\frac{-\ln(z-x)+\lambda}{z-x}f(z) \; dz$$
$$=(-\ln(x)+\lambda) \; f(x)+ \int_{0}^{x}\frac{f\left ( x\right )-f(u)}{x-u}du$$
$$ = [\; -\ln(x)+ \frac{\mathrm{d} }{\mathrm{d} \beta}\ln[\beta!]\mid _{\beta =xD} \; ] \; f(x)=[ \; -\ln(x)+\Psi(1+xD) \;] \; f(x)$$
$$ = [ \; -\ln(x)+\lambda - \sum_{n=1}^{\infty } (-1)^n\zeta (n+1) \; (xD)^n \;] \; f(x)$$
dónde $\lambda$ está relacionado con la constante de Euler-Mascheroni a través de $\lambda=D_{\beta} \; \beta! \;|_{\beta=0}$.
Otras repeticiones y otras formas de llegar a las repeticiones anteriores se dan en las referencias a continuación.
Veamos una forma a través del formalismo de las secuencias polinomiales de Appell Sheffer, que resuelve cualquier problema de convergencia al exponenciar la fórmula explícita de diff op para el infinigen y permite conexiones a la teoría de polinomios / funciones simétricas.
La secuencia relevante de polinomios de Appell $p_n(z) = (p.(z))^n$ tiene la función de generación exponencial, completa en la variable compleja $t$, es decir, con su serie de Taylor globalmente convergente,
$$\frac{1}{t!} \; e^{zt} = e^{a.t} \; e^{zt} = e^{(a.+z)t} = e^{p.(z)t} = \sum_{n\geq 0} p_n(z) \frac{t^n}{n!}$$
con la secuencia polinomial recíproca definida de cuatro formas consistentes $\hat{p}(z)$
1) $t! \;e^{zt} = e^{\hat{a}.t} \; e^{zt} = e^{(\hat{a}.+z)t} = e^{\hat{p}.(z)t} $, un egf,
2) $M_p \cdot M_{\hat{p}} = I $, en términos de las matrices de coeficiente triangular inferior de las dos secuencias en la base de potencia monomial $z^n$ con unidad diagonal,
3) $p_n(\hat{p}.(z)) = \hat{p}_n(p.(z)) = (a. + \hat{a.}+z)^n = 1$, una inversión convolucional umbral,
4) $D_z! \; z^n = e^{\hat{a.}D_z} \; z^n = (\hat{a.}+z)^n = \hat{p}_n(z)$, un generador operativo.
De ello se deduce que la elevación op de los polinomios de Appell $p_n(z)$ definido por
$$R_z \; p_n(z) = p_{n+1}(z)$$
es dado por
$$ R_z \; p_n(z) = \frac{1}{D_z!} \; z \; D_z! \; p_n(z) = \frac{1}{D_z!} \; z \; p_n(\hat{p}.(z))$$
$$ = \frac{1}{D_z!} \; z \; z^n = \frac{1}{D_z!} \; z^{n+1} = p_{n+1}(z),$$
una conjugación de operador, o 'transformación de calibre', del operador de elevación $z$ para los monomios de poder.
Además, con el conmutador del operador $[A,B] = AB - BA$,
$$R_z = \frac{1}{D_z!} \; z \; D_z! = z + [\frac{1}{D_z!},z] \; D_z! .$$
Ahora vuelva a ingresar Pincherle y el operador derivado del mismo nombre, que Rota promocionó para el cálculo del operador finito. El derivado de Graves-Pincherle deriva su poder del conmutador Graves-Lie-Heisenberg-Weyl$[D_z,z] = 1$ de lo cual, por reordenamiento normal, implica para cualquier función expresada como una serie de potencias en $D_z$
$$[f(D_z),z] = f'(D_z) = D_t \; f(t) \; |_{t = D_z}.$$
Este es un avatar de la derivada de Pincherle (PD) que se sigue de la acción $$[D^n,z] \; \frac{z^{\omega}}{\omega!} = [\;\frac{\omega+1}{(\omega+1-n)!} - \frac{1}{(\omega-n)!}\;] \; z^{\omega+1-n} = n \; D_z^{n-1} \; \frac{z^{\omega}}{\omega!},$$
pero el PD es válido para operaciones más generales de bajada y subida (escalera) que satisfacen $[L,R]= 1$.
Luego
$$R_z = \frac{1}{D_z!} \; z \; D_z! = z + [\frac{1}{D_z!},z] \; D_z! = z + D_{t = D_z}\; \ln[\frac{1}{t!}] $$
$$ = z - \psi(1+D_z).$$
Con la sustitucion $ z = \ln(x)$
$$R_z = R_x = \ln(x) - \psi(1+ x D_x) = -IG = -\ln(D_x).$$
La operación de levantamiento se define de tal manera que
$$ e^{t \; R_z} \; 1 = \sum_{n \geq 0} \frac{t^n}{n!} R_z^n \; 1 = e^{tp.(z)} = \frac{1}{t!} \; e^{zt},$$
una función completa para $t$complejo; por lo tanto,
$$e^{-t \; IG} \;1 = e^{t \;R_x} \; 1 = e^{t \; p.(\ln(x))} = \frac{x^t}{t!},$$
entonces
$$e^{-(\alpha+\beta) \; IG} \;1 = e^{(\alpha+\beta) \; R_x} \; 1 = e^{(\alpha+\beta) \; p.(\ln(x))} = \frac{x^{\alpha+\beta}}{(\alpha+\beta)!}, $$
$$ = e^{-\alpha \; IG} e^{-\beta \; IG} \;1 = e^{-\alpha \; IG} \; \frac{x^\beta}{\beta!} , $$
y podemos identificar que de hecho
$$e^{-\alpha \; IG} = D_x^{-\alpha}$$
y
$$IG = \ln(D_x).$$
Now apply the PD to $\ln(D)$, as a check of the formalism and an avenue to a matrix rep, giving formally
$$ [\ln(D),x] = [\ln(1-(1-D)),x] = \frac{1}{1-(1-D)} = \frac{1}{D} = D^{-1}.$$
This is given an explicit meaning by evaluating the commutator for a general function $g(x)$ analytic at the origin (which generalizes to our 'basis' set) using the integral rep for $R_x = -\ln(D_x)$, giving
$$[\ln(D_x),x] \; g(x) = [-R_x,x] \; g(x) = (-\ln(x)+\lambda) \; [x,g(x)]$$
$$ + \int_{0}^{x}\frac{xg(x)-ug(u)}{x-u} \; du - x \int_{0}^{x}\frac{g(x)-g(u)}{x-u} \; du$$
$$ = \int_{0}^{x} \; g(u) \; du = D_x^{-1} g(x).$$
So, we have
$$[\ln(D_x),x] = [-R_x,x] = D_x^{-1} = [-\ln([-R_x,x]),x]$$
and
$$-R_x = \ln(D_x) = -\ln(D_x^{-1}) = -\ln([-R_x,x]),$$
implying
$$e^{R_x} =\exp[\ln([-R_x,x])] = [-R_x,x] = D_x^{-1}.$$
In addition, with
$$\bigtriangledown^{s}_{n} \; c_n=\sum_{n=0}^{\infty}(-1)^n \binom{s}{n}c_n,$$
then
$$R_x = -\ln(D_x) = \ln(D_x^{-1}) = \ln[1-(1-D_x^{-1})]$$
$$ = - \sum_{n \geq 1} \frac{1}{n} \; \bigtriangledown^{n}_{k} D_x^{-k}, $$
where
$$D_x^{-1} \frac{x^{\omega}}{\omega!} = \frac{x^{\omega+1}}{(\omega+1)!}.$$
The finite difference op series is embedded in the derivative $D_{\alpha =0}$ of the Newton interpolator
$$ \frac{x^{\alpha+\omega}}{(\alpha+\omega)!} = \bigtriangledown^{\alpha}_{n}\bigtriangledown^{n}_{k}\frac{x^{\omega+k}}{(\omega+k)!}$$
$$ = \bigtriangledown^{\alpha}_{n}\bigtriangledown^{n}_{k} D_x^{-k} \;\frac{x^{\omega}}{\omega!}$$
$$ = [1-(1-D_x^{-1})]^{\alpha} \; \;\frac{x^{\omega}}{\omega!} = D_x^{-\alpha}\;\frac{x^{\omega}}{\omega!}. $$
For $\alpha = -m$ with $m = 1,2,...$ and $\omega = 0$, this Newton interpolator gives
$$D^m_x \; H(x) = \delta^{(m-1)}(x) = H(x) \; \frac{x^{-m}}{(-m)!} = \bigtriangledown^{-m}_{n}\bigtriangledown^{n}_{k} D_x^{-k} \; H(x)$$
$$ = \sum_{n \geq 0} (-1)^n \binom{-m}{n} \bigtriangledown^{n}_{k} \; H(x) \frac{x^k}{k!} = H(x) \; \sum_{n \geq 0} (-1)^n \binom{-m}{n} \; L_n(x)$$
$$ = H(x) \; \sum_{n \geq 0} \binom{m-1+n}{n} \; L_n(x), $$
which agrees in a distributional sense with the Laguerre polynomial resolutions of $f(x) = \delta^{(m-1)}(x)$ in the formulas of this MO-Q since, with $c_n = f_n$ in the notation there,
$$ f(x) = \sum_{n \geq 0} c_n \; L_n(x)$$
with
$$\sum_{n \geq 0} t^n \; c_n = \frac{1}{1-c.t} = \int_0^{\infty} e^{-x} \sum_{n \geq 0} t^n \; L_n(x) f(x) \; dx$$
$$ = \int_0^{\infty} e^{-x} \frac{e^{-\frac{t}{1-t}x}}{1-t} f(x) \; dx = \int_0^{\infty} \frac{e^{-\frac{1}{1-t}x}}{1-t} f(x) \; dx,$$
so, for the $m$-th derivative of the Heaviside function,
$$\frac{1}{1-c_{m,.}t}= \int_0^{\infty} e^{-x} \frac{e^{-\frac{t}{1-t}x}}{1-t} f(x) \; dx = \int_0^{\infty} \frac{e^{-\frac{1}{1-t}x}}{1-t} \delta^{(m-1)}(x) \; dx = \frac{1}{(1-t)^{m}},$$
and, therefore, the coefficients of the Laguerre series resolution of the $m$-th derivative of the Heaviside function are
$$c_{m,n} =(-1)^n \binom{-m}{n} = \binom{m-1+n}{n},$$
in agreement with the Newton interpolator.
Applying $D_x^{-1}$ iteratively to both sides of this identity establishes convergent interpolations for $\omega = 1,2,3,...$, and acting on the power basis within the binomial expansion of $\frac{x^{\omega}}{\omega!} = \frac{(1-(1-x))^{\omega}}{\omega!}$ should give convergent expressions as well.
Similarly for $\omega=0$, we have the Laplace transform (or more accurately, the modified Mellin transform central to Ramanujan's master formula via which the FIDs may be cast as Mellin interpolations of the standard derivatives),
$$\frac{1}{1-c.t} = \int_0^{\infty} \frac{e^{-\frac{1}{1-t}x}}{1-t} \frac{x^{\alpha}}{\alpha!} \; dx = (1-t)^{\alpha},$$
for $Re(\alpha) > -1$, giving
$$c_n = (-1)^n \binom{\alpha}{n}.$$
This Laplace transform and, therefore, the Newton interpolator can be analytically continued in several standard ways (e.g., blow-up from the real line to the complex plane via a Hankel contour, Hadamard finite part) to the full complex plane for $\alpha$. For the negative integer exponents, the Hankel contour contracts to the usual Cauchy contour rep for differentiation. The Hadamard-finite-part approach allows the Newton interpolator to be appropriately modified strip by strip to give the intended results.
Returning to the finite difference rep for $\ln(D_x)$, action of the infinigen on 1 then gives, for $x > 0$,
$$\ln(D_x) 1 = \sum_{n \geq 1} \frac{1}{n} \; \bigtriangledown^{n}_{k} D_x^{-k} 1$$
$$ = \sum_{n \geq 1} \frac{1}{n} \; \bigtriangledown^{n}_{k} \frac{x^k}{k!}$$
$$ = \sum_{n \geq 1} \frac{1}{n} \; L_n(x) = -\ln(x)-.57721... , $$
where $L_n(x)$ are the Laguerre polynomials, in agreement with the first equation of B & D in the question.
Plots of the results of evaluation of the operator series truncated at $n=80$, or so, acting on $x^2$ and $x^3$ match the analytic results as well.
The matrix rep $M$ of the action of this integration op $D_x^{-1}$ on $x^n$ is simple enough in the power basis--a matrix with all zeros except for the first subdiagonal, or superdiagonal, depending on left or right matrix multiplication, with elements $(1,1/2,1/3,...)$.
The matrix rep for $R_x$ is then
$$ R_M = \ln[I-(I-M)] = - \sum_{n \geq 1} \frac{1}{n} \; \bigtriangledown^{n}_{k} M^k. $$
Exponentiating,
$$D_x^{-\beta} = \exp(-\beta R_x)= (1-(1-D_x^{-1} ) )^{\beta} = \bigtriangledown^{\beta}_{n} \bigtriangledown^{n}_{k} (D_x^{-1})^k.$$
The associated matrix rep is
$$ \exp(-\beta R_M)= \bigtriangledown^{\beta}_{n} \bigtriangledown^{n}_{k} M^k.$$
(I haven't checked these matrix computations numerically as I normally would since my MathCad disc is in storage in another state.)
To act on non-integer powers of $x$, you must represent them as superpositions of the integer power basis as in the binomial expansion
$$x^{\alpha} = [1 - (1-x)]^{\alpha} = \bigtriangledown^{\alpha}_{n} \bigtriangledown^{n}_{k} x^k .$$
Alternatively, return to the $z$ rep and write down the matrix rep of the raising op $R_z$. This is a simple transformation of the infinite lower triangular Pascal matrix augmented with a first superdiagonal of all ones. OEIS A039683 has an example of the matrix equivalent of a raising op in the monomial power basis, also known as a production matrix in another approach (Riordan?) to polynomial sequences. Better in this case to switch to the divided power basis $z^n/n!$. Then the augmented Pascal matrix becomes the simple summation matrix of all ones. Multiply along the n-th diagonal by $c_n$ where $(c_0,c_1,..) = (1-\lambda,-\zeta(2),...,(-1)^k \; \zeta(k+1),...)$ to generate the matrix rep for the raising op, but since, e.g., $x^2=e^{2z}$, this quickly becomes a messy algorithm to apply compared to the finite difference rep.
Further references (not exhaustive):
- Riemann zeta and fractional calculus, an MO-Q
- Digamma / Psi function, Wiki
- OEIS A238363 on log of the derivative operator
- OEIS A036039 on the cycle index polynomials and symmetric functions
- Zeta functions and the cycle index polynomials, an MO-Q
- On the raising op for FIDs, an MSE-Q
- OEIS A132440 on a matrix infinigen
- OEIS A263634 on partition polynomial reps for Appell raising ops
- Ref for another interp of a log of a derivative, a pdf
- Interpolation/analytic continuation of the factorials to the gamma fct, MSE-Q
- Raising ops for Appell sequences, a blog post
- Example of Mellin interpolation of $e^{tD}$, MO-Q
- More on interpolation/analytic continuation of differential ops, a blog post
- Two analytic continuations of the coefficients of a generating function, MO-Q
- FIDs and confluent hypergeometric functions, an MO-Q
- Note on the Pincherle derivative, a blog post
- FIDs and interpolation of binomial coefficients, a blog post
- FIDs, interpolation, and travelling waves, a blog post