Полупримарные кольца: точнейшая оценка длин цепочек главных идеалов

Aug 18 2020

Кольцо с единством $A$ называется полупервичным, если $\mathfrak r:=\mathrm{Jac}(A)$ нильпотентен и ${A}/{\mathfrak r}$полупросто (артиново). Я пытаюсь найти доказательство (или контрпример) для:

когда $A$ является полупервичным и $\mathfrak r^n=(0)$ в то время как ${A}/{\mathfrak r}$ имеет длину $l$ как $A$-модуля, то каждая последовательность главных левых (или правых) идеалов в $A$ имеет самое большее $ln$ правильные включения.

Я наткнулся на это, изучая характеристики полупримарных (и других семейств) колец. Я нашел это утверждение в статье [ 1 (Björk) , Section 0], но Бьорк утверждает его без доказательства. Для коммутативных$A$, это определенно правда (см. доказательство ниже), но я не могу понять некоммутативный случай. Если это правда, то это, в частности, справедливо для односторонних колец Артиниана - с ними может быть проще сначала справиться, но я не уверен, действительно ли это упрощает проблему.

Я был бы рад получить любую помощь в доказательстве точной границы или любой идеи для контрпримера.

Изменить: Джереми решил это, приведя хороший контрпример в своем ответе ниже. В качестве дополнительного вопроса: знает ли кто-нибудь наиболее точную общую оценку$b(l,n)$в некоммутативном случае? Конец редактирования

Есть более слабая качественная версия:

Кольцо полупримарно тогда и только тогда, когда существует верхняя оценка длин собственных цепочек главных левых (или правых) идеалов.

До сих пор я нашел только одно место, где это обсуждается в литературе: [ 2 (книга Роуэна) , теорема 2.7.7]. Роуэн дает доказательство (см. Набросок ниже) качественной характеристики с более слабой общей оценкой$l^{n+1}-1$ (когда $l>1$). Я думаю, действительно можно получить$l+l^2+\ldots+l^n$ от его доказательства, но это все еще очень далеко от границы Бьорка.

Кстати, из следствия можно вывести более общий результат:

Для произвольного $A$-модуль, любая цепочка подмодулей, имеющих не более $r$ генераторы, имеет не более $b(lr,n)$ правильные включения.

Набросок доказательства: такую ​​правильную цепочку можно поднять до правильной цепочки $r$-порожденные подмодули левого (или правого) модуля $A^r$ и это соответствует собственной цепочке главных левых (или правых) идеалов кольца матриц $C:=M_r(A)$. В настоящее время,$C$ также полупервично с $(\mathrm{Jac}(C))^n=(0)$ в то время как ${C}/{\mathrm{Jac}(C)}$ имеет длину $lr$ над $C$, так что мы закончили $r=1$ дело.


Возвращаясь к утверждению Бьорк об основных идеалах, вот чего я достиг / пробовал до сих пор:

Доказательства по делам $n=1$ и $l=1$соответственно

$n=1$ тривиально. $l=1$ средства $(A,\mathfrak r)$ местный, поэтому если $\mathfrak a_0\subsetneq\ldots\subsetneq\mathfrak a_m$ - собственная цепочка главных левых идеалов в $A$, тогда $\mathfrak a_{m-1}\subseteq\mathfrak r$, следовательно $\mathfrak a_{m-1}$ является ${A}/{\mathfrak r^{n-1}}$-модуль с собственной цепочкой циклических подмодулей длины $m-1$. Это поднимается до правильной цепочки главных левых идеалов в${A}/{\mathfrak r^{n-1}}$ длины $m-1$. Используя индукцию,$m-1\leq n-1$, так $m\leq n$.

Доказательство коммутативного случая.

Если $A$ коммутативна, то $A\simeq A_1\times\ldots\times A_l$ с местными кольцами $(A_i,\mathfrak m_i)$ с участием $\mathfrak m_i^n=(0)$ (наименьший показатель на самом деле может быть $n_i\leq n$ для некоторых из $\mathfrak m_i$) и цепочку главных идеалов в $A$ дает соответствующие цепочки главных идеалов в каждом $A_i$ (умножить на $i$-й идемпотент $e_i$). Цепи в$A_i$ иметь самое большее $n$ (четный $n_i$) собственных включений $l=1$дело. Следовательно, исходная цепочка в$A$ может иметь самое большее $ln$ (четный $n_1+\ldots+n_l$) собственные включения.

Что я пробовал в некоммутативном случае

Отношение к идеальным кольцам

Если $\mathfrak r$ нильпотентен, это особенно $T$-нильпотентное (с обеих сторон), поэтому каждое полупримарное кольцо идеально слева (и справа). Эти кольца имеют DCC на правых (левых) главных идеалах (верно и обратное). Есть ли «прямое конструктивное» доказательство этого утверждения? Если так, то он может содержать полезные аргументы в пользу вышеупомянутой проблемы, но мне известны только «косвенные» доказательства.

Первый подход - адаптация из коммутативного случая

Я пробовал индукцию на $l$. За$l=1$см. выше. Теперь позвольте$l>1$. В виде$A$ полусовершенно, мы можем написать $A=Ae_1\oplus\ldots\oplus Ae_l$ с попарно ортогональными локальными идемпотентами $e_i$ с участием $e_1+\ldots+e_l=1$. Если$\mathfrak a_0\subseteq\ldots\subseteq\mathfrak a_m$ цепь главных левых идеалов $\mathfrak a_j=Aa_j$ в $A$, то для каждого $i$, получаем цепочку $(Aa_je_i)_j$ циклических подмодулей $Ae_i$. Теперь следующие 2 шага не работают :

  1. $M_i:=Ae_i$ является (циклическим) $A$-модуль и ${M_i}/{\mathfrak rM_i}$ имеет длину $l_i=1$. Я хотел бы вывести (например, с помощью более сильного утверждения ($\star$) ниже), что цепь $(Aa_je_i)_j$ циклических подмодулей имеет не более $nl_i=n$ правильные включения.
  2. Если в нашей исходной цепочке есть хотя бы $ln+1$ включения, и если 1. верно, то есть хотя бы один $j$ с участием $\mathfrak a_je_i=\mathfrak a_{j+1}e_i$ для всех $i$. потом$$ \mathfrak a_{j+1}\subseteq\mathfrak a_{j+1}e_1+\ldots+\mathfrak a_{j+1}e_r=\mathfrak a_je_1+\ldots+\mathfrak a_je_r, $$ и мы бы сделали, если бы это содержалось в $\mathfrak a_j$. Но это не обязательно должно быть правдой, поскольку$\mathfrak a_j$это всего лишь левый идеал.

Более общий результат, упомянутый в 1., таков:

($\star$) Если $M$ циклический $A$-модуль с $\ell({M}/{\mathfrak rM})=1$ (или даже $=k$), то каждая цепочка циклических подмодулей имеет не более $n$ (или же $kn$) собственные включения.

Я не уверен, правда ли это в целом. В коммутативном случае снова можно свести к$A$ быть местным, поэтому $l=1$. потом$k=1$ и цепь можно поднять, чтобы $A$, что сводится к случаю $l=1$ с самого начала.

Второй подход - редукция по модулю $\mathrm{Jac}(A)$

Мы можем уменьшить по модулю $\mathfrak r$, т.е. перейти к ${A}/{\mathfrak r}$, т.е. посмотрите на $\mathfrak a_j+\mathfrak r$. Есть не больше$n$правильные включения там. Если случайно,$$ \mathfrak r=\mathfrak a_0+\mathfrak r=\ldots=\mathfrak a_{m-l}+\mathfrak r\subsetneq\ldots\subsetneq\mathfrak a_m+\mathfrak r=A, $$ тогда $\mathfrak a_{m-l}$ будет содержаться в $\mathfrak r$, так что это ${A}/{\mathfrak r^{n-1}}$-модуль. Поднимая цепь длины$m-l$ к ${A}/{\mathfrak r^{n-1}}$ (как в доказательстве дела $l=1$) мы бы получили $m-l\leq (n-1)l$ по индукции и готово.

Однако распределение $l$ правильные включения после восстановления до ${A}/{\mathfrak r}$может быть очень произвольным. Я пробовал разные вещи, но не смог «соединить» включения или манипулировать цепочкой (сохраняя длину и правильность), чтобы сместить включения. Почему-то проблема в том, что цепь может лежать очень "перекос" по отношению к ней.$(0)=\mathfrak r^n\subseteq\ldots\subseteq\mathfrak r\subseteq A$.

Можно также попытаться уменьшить по модулю $\mathfrak r^{n-1}$ и использовать индукцию, но я столкнулся с аналогичными проблемами там (нет контроля того, где происходят правильные включения).

Чтобы понять, как действовать дальше, я рассмотрел следующий простейший случай. $n=l=2$ и попытался вывести противоречие из правильной цепочки $(0)=\mathfrak a_0\subsetneq\ldots\subsetneq\mathfrak a_5=A$. Но даже там я не мог уладить все случаи раздачи правильных включений после редуцирования мода$\mathfrak r$.

Третий подход - отсечение факторов справа

Каждая («максимальная») собственная цепочка главных левых идеалов имеет вид $(0)=Aa_0\cdots a_{m-1}\subsetneq Aa_1\cdots a_{m-1}\subsetneq\ldots\subsetneq Aa_{m-1}\subsetneq A$. Теперь, если у нас есть равенства по модулю$\mathfrak r$ из $i$ к $j>i$, т.е. $$ Aa_i\cdots a_{m-1}+\mathfrak r=\ldots=Aa_j\cdots a_{m-1}+\mathfrak r, $$ можно взглянуть на цепочку $$ Aa_i\cdots a_{j-1}\subsetneq\ldots\subsetneq Aa_{j-1}\subsetneq A.\qquad (\star\star) $$Это все еще правильно. Если он достаточно длинный, он снова даст равенства после уменьшения по модулю$\mathfrak r$. Роуэн использует именно этот метод в своем доказательстве (упомянутом выше) и просто выбирает достаточно большую оценку, чтобы после выполнения$n$ шаги рекурсии, он получает цепочку $$ Aa_i\cdots a_{i+n}\subsetneq\ldots\subsetneq Aa_{i+n} $$ с участием $Aa_ja_{j+1}+\mathfrak r=Aa_{j+1}+\mathfrak r$ за $i\leq j<i+n$. Затем, используя другой аргумент,$Aa_{i+1}\cdots a_{i+n}\subseteq\mathfrak r^n+Aa_i\cdots a_{i+n}=Aa_i\cdots a_{i+n}$, противоречие.

Однако, как сказано выше, это работает только с очень большой границей. Я не знаю, могут ли некоторые аргументы помочь получить доказательство оценки Бьорка. У меня такое ощущение, что какой-то аргумент перехода вроде ($\star\star$) следует использовать и может даже иметь решающее значение.


Особые случаи

Может быть полезно заняться особыми случаями, чтобы получить идеи доказательства или даже подсказки для контрпримеров.

Изделие колец

Если $A\simeq A_1\times\ldots\times A_r$, легко уменьшить с $A$ все $A_i$приняв доказательство коммутативности. Однако в целом$A$ совсем не обязательно иметь разложение продукта - в частности разложение Артина-Веддерберна $A/{\mathfrak r}\simeq M_{l_1}(K_1)\times\ldots\times M_{l_r}(K_r)$ не нужно поднимать до $A$. Например$A=\begin{pmatrix} \mathbb{Q} & \mathbb{Q}^{(\mathbb{N})} \\ 0 & \mathbb{Q} \end{pmatrix}$ является полупримарным, неартиновым кольцом, которое не является кольцом-продуктом (не содержит пары нетривиальных ортогональных центральных идемпотентов).

Случай простой редукции - матричное кольцо над локальным полупримарным кольцом

Если $A/{\mathfrak r}\simeq M_l(K)$, тогда $A\simeq M_l(D)$ для местного кольца $(D,\mathfrak m)$ с участием ${D}/{\mathfrak m}\simeq K$ (см. [2 (Rowen), предложение 2.7.21]) и (собственные) цепочки главных правых идеалов в $A$ соответствуют (собственным) цепочкам $D$-подмодули $D^r$ максимум с $r$генераторы каждый. Кроме того, в этом частном случае я не продвинулся дальше.


Цитаты:

[1] Бьорк: «Нетеровы и артиновы цепные условия ассоциативных колец». Arch. Математика. 24 (1973), 366–378.
DOI: 10.1007 / bf01228225

[2] Л. Х. Роуэн: "Теория колец. Том 1." Academic Press, Сан-Диего (1988).
https://www.elsevier.com/books/ring-theory-v1/rowen/978-0-12-599841-3

Ответы

3 JeremyRickard Aug 20 2020 at 14:09

Вот артинианский контрпример.

Я опишу кольцо $A$ явно, но на языке колчанов с отношениями, если $Q$ это колчан с двумя вершинами, петлей в каждой вершине и стрелкой из вершины $1$ к вершине $2$, тогда $A$ алгебра путей $Q$ при условии, что все пути длины два равны нулю.

Позволять $A$ быть алгеброй над полем $k$ с основанием $\{e_{1},e_{2},a,b,c\}$, где все произведения двух базисных элементов равны нулю, за исключением: $$e_{1}^{2}=e_{1},\quad e_{2}^{2}=e_{2},\quad e_{1}a=a=ae_{1},\quad e_{1}b=b=be_{2},\quad e_{2}c=c=ce_{2}.$$

потом

  • $A$ является пятимерной ассоциативной алгеброй с единицей $1=e_{1}+e_{2}$.
  • Радикал Джейкобсона $\mathfrak{r}$ охватывает $\{a,b,c\}$, и $\mathfrak{r}^{2}=0$. так что в обозначении вопроса,$n=2$.
  • $A/\mathfrak{r}\cong k\times k$, поэтому в обозначениях вопроса $l=2$.
  • Так $ln=4$.

Но есть правильно нисходящая цепочка основных левых идеалов. $$A > A(a+e_{2}) > Ae_{2} > A(b+c) > Ac > 0$$ с базами $$\{e_{1},e_{2},a,b,c\}\supset\{e_{2},a,b,c\}\supset\{e_{2},b,c\} \supset\{b,c\}\supset\{c\}\supset\emptyset.$$