Преобразование серии списков pandas в массив numpy

Aug 20 2020

Я хочу преобразовать серию pandas строк списка чисел в массив numpy. У меня что-то вроде:

ds = pd.Series(['[1 -2 0 1.2 4.34]', '[3.3 4 0 -1 9.1]'])

Мой желаемый результат:

arr = np.array([[1, -2, 0, 1.2, 4.34], [3.3, 4, 0, -1, 9.1]])

Что я сделал до сих пор, так это преобразовал серию панд в серию списка чисел как:

ds1 = ds.apply(lambda x: [float(number) for number in x.strip('[]').split(' ')])

но я не знаю, как перейти от ds1к arr.

Ответы

5 ShubhamSharma Aug 20 2020 at 19:52

Используйте Series.str.strip+ Series.str.splitи создайте новый np.arrayс помощью dtype=float:

arr = np.array(ds.str.strip('[]').str.split().tolist(), dtype='float')

Результат:

print(arr)

array([[ 1.  , -2.  ,  0.  ,  1.2 ,  4.34],
       [ 3.3 ,  4.  ,  0.  , -1.  ,  9.1 ]])
1 Snoopy Aug 20 2020 at 23:48

Вы можете сначала попробовать удалить «[]» из объекта Series, тогда все станет проще, https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.split.html.

ds1 = ds.str.strip("[]")
# split and exapand the data, conver to numpy array
arr = ds1.str.split(" ", expand=True).to_numpy(dtype=float)

Тогда arrбудет нужный формат,

array([[ 1.  , -2.  ,  0.  ,  1.2 ,  4.34],
       [ 3.3 ,  4.  ,  0.  , -1.  ,  9.1 ]])

Затем я провел небольшое профилирование по сравнению с колоритом Шубхэма.

# Shubham's way
%timeit arr = np.array(ds.str.strip('[]').str.split().tolist(), dtype='float')
332 µs ± 5.72 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

# my way
%timeit ds.str.strip("[]").str.split(" ", expand=True).to_numpy(dtype=float)
741 µs ± 4.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Очевидно, его решение намного быстрее! Ваше здоровье!