Произведение / деление экспонент с факториалами в качестве основы

Aug 15 2020

Я поставил эту формулу на WolframAlpha $$\frac{(26!)^{n+2}}{13!}$$ и это упрощено до $$2^{23n+36}\cdot175^{3n+5}\cdot7429^{n+2}\cdot34749^{2n+3}$$

Я пытался решить это вручную \begin{align} \frac{(26!)^{n+2}}{13!} & = \frac{(26\cdot25\cdot\ldots\cdot3\cdot2)^{n+2}}{13\cdot12\cdot\ldots\cdot3\cdot2} \\\\ & = (26\cdot25\cdot\ldots\cdot15\cdot14)^{n+2} \cdot (13\cdot12\cdot\ldots\cdot3\cdot2)^{n+1} \\\\ & = (2^{13}\cdot3^5\cdot5^4\cdot7^2\cdot11\cdot13\cdot17\cdot19\cdot23)^{n+2}\cdot(2^{10}\cdot3^5\cdot5^2\cdot7\cdot11\cdot13)^{n+1} \\\\ & = 2^{23n+36}\cdot(3^5)^{2n+3}\cdot(5^2)^{3n+5}\cdot7^{3n+5}\cdot11^{2n+3}\cdot13^{2n+3}\cdot17^{n+2}\cdot19^{n+2}\cdot23^{n+2} \\\\ & = 2^{23n+36}\cdot(5^2\cdot7)^{3n+5}\cdot(17\cdot19\cdot23)^{n+2}\cdot(3^5\cdot11\cdot13)^{2n+3}\\\\ & = 2^{23n+36}\cdot175^{3n+5}\cdot7429^{n+2}\cdot34749^{2n+3}\\ \end{align}

Мой вопрос: должен ли я выполнять всю эту работу (простая факторизация факториалов) каждый раз, когда я хочу упростить такое выражение, или есть более быстрый способ использования дискретной математики?

Ответы

1 Sil Aug 16 2020 at 19:41

Для более системного подхода пусть $v_p(x)$ быть $p$-адическая оценка $x$, то по некоторым основным правилам, таким как $v_p(x^n)=n\cdot v_p(x)$ и $v_p(x/y)=v_p(x)-v_p(y)$. Также мы можем использовать формулу Лежандра $v_p(n!)=\sum_{i=1}^{\infty}\lfloor \frac{n}{p^i} \rfloor$, так \begin{align} v_2\left(\frac{(26!)^{n+2}}{13!}\right)&=(n+2)v_2(26!)-v_2(13!)\\ &=(n+2)\left(\left\lfloor \frac{26}{2} \right\rfloor + \left\lfloor \frac{26}{4} \right\rfloor + \left\lfloor \frac{26}{8} \right\rfloor + \left\lfloor \frac{26}{16} \right\rfloor \right)\\ &\ \ \ -\left(\left\lfloor \frac{13}{2} \right\rfloor + \left\lfloor \frac{13}{4} \right\rfloor + \left\lfloor \frac{13}{8} \right\rfloor \right)\\ &=(n+2)(13+6+3+1)-(6+3+1)\\ &=23n+36.\\ \end{align} Теперь продолжайте аналогичным образом для $p=3,5,7,11,13,17,19,23$для получения полной факторизации. Затем вы можете сгруппировать термины так, как вам нравится.