dejar $\mathbf a$ y $\mathbf b$ser vectores 3D. Encontrar un $3\times3$ matriz $\mathbf R$ tal que $\mathbf {Ra} = \mathbf a_{\bot \mathbf b}$.

Aug 15 2020

Hola, como dice el título, estoy tratando de encontrar esto.

dejar $\mathbf a$ y $\mathbf b$ser vectores 3D. Encontrar un$3\times3$ matriz $\mathbf R$ tal que $\mathbf {Ra} = \mathbf a_{\bot \mathbf b}$.

según mis ejercicios la respuesta es

$$ R = \frac{1}{b^2} \begin{bmatrix} b^2_y+b^2_z & -b_xb_y & -b_xb_z \\ -b_xb_y & b^2_x+b^2_z & -b_yb_z \\ -b_xb_z & -b_yb_z & b^2_x+b^2_y \\ \end{bmatrix} $$

No he podido llegar a esta solución y he logrado llegar tan lejos como

$$ a_{\bot b} = a - a_{||b} = a - \frac{a\cdot b}{b^2}b $$ y puedo sustituir $ a_{||b} $ por su expresión como producto matricial $$ a_{||b} = \frac{1}{b^2}bb^{\mathrm T}a $$ y este es un producto externo, por lo que se convierte en $$a_{\bot b} = \frac{1}{b^2}\begin{bmatrix} b^2_x & b_xb_y & b_xb_z \\ b_xb_y & b^2_y & b_yb_z \\ b_xb_z & b_yb_z & b^2_z+b^2_y \\ \end{bmatrix}\begin{bmatrix} a_x \\ a_y \\ a_z \\ \end{bmatrix}$$

de esto puedo sacar $$ Ra = a - \frac{1}{b^2}\begin{bmatrix} b^2_x & b_xb_y & b_xb_z \\ b_xb_y & b^2_y & b_yb_z \\ b_xb_z & b_yb_z & b^2_z+b^2_y \\ \end{bmatrix}\begin{bmatrix} a_x \\ a_y \\ a_z \\ \end{bmatrix} $$ Esto es todo lo que pude obtener y no estoy seguro de los pasos necesarios para llevar la última ecuación a la primera.

Gracias por cualquier información que cualquiera pueda brindar.

Respuestas

1 AndrewShedlock Aug 16 2020 at 01:39

Los últimos pasos serán $$ \begin{align*} Ra &= a - \frac{1}{b^2}\begin{bmatrix}b_x^2 & b_xb_y & b_xb_z\\ b_xb_y & b_y^2 & b_yb_z\\ b_xb_z & b_yb_z & b_z^2\end{bmatrix}a\\ &= \frac{1}{b^2}\Bigg(b^2I - \begin{bmatrix}b_x^2 & b_xb_y & b_xb_z\\ b_xb_y & b_y^2 & b_yb_z\\ b_xb_z & b_yb_z & b_z^2\end{bmatrix}\Bigg)a \\ \end{align*}$$ Darse cuenta de $b^2 = b_x^2 + b_y^2 + b_z^2$. Entonces$$\begin{align*} Ra &= \frac{1}{b^2}\Bigg(\begin{bmatrix}b_x^2 + b_y^2 + b_z^2& 0 & 0\\ 0 & b_x^2 + b_y^2 + b_z^2 & 0\\ 0 & 0 & b_x^2 + b_y^2 + b_z^2\end{bmatrix}-\begin{bmatrix}b_x^2 & b_xb_y & b_xb_z\\ b_xb_y & b_y^2 & b_yb_z\\ b_xb_z & b_yb_z & b_z^2\end{bmatrix}\Bigg)a \\ &= \frac{1}{b^2}\begin{bmatrix}b_y^2 + b_z^2 & -b_xb_y & -b_xb_z\\ -b_xb_y & b_x^2 + b_z^2 & -b_yb_z\\ -b_xb_z & -b_yb_z & b_x^2 + b_y^2\end{bmatrix}a\end{align*} $$ Por lo tanto $$ R = \frac{1}{b^2}\begin{bmatrix}b_y^2 + b_z^2 & -b_xb_y & -b_xb_z\\ -b_xb_y & b_x^2 + b_z^2 & -b_yb_z\\ -b_xb_z & -b_yb_z & b_x^2 + b_y^2\end{bmatrix}$$