Demostrar el teorema de Tonelli para $n$ Factores

Aug 21 2020

Estoy tratando de probar la siguiente extensión del teorema de Tonelli:

Proposición. Dejar$(\Omega_j,\mathcal{A}_j,\mu_j)$ $j=1,\dots,n$ ser $\sigma$-Espacios de medida finita. Dejar$f\to[0,\infty]$ frijol $\mathcal{A}_1\otimes \dots\otimes\mathcal{A}_n$ función medible en $\Omega_1\times\dots\times\Omega_n$. Entonces para cada permutación$j_1,\dots,j_n$ de $1,\dots,n$ tenemos

$$\int f(\omega_1,\dots,\omega_n) \,d (\mu_1 \otimes \dots \otimes \mu_n)=\int \dots \int f(\omega_1,\dots,\omega_n)\,d\mu_{j_1}\dots d\mu_{j_n}$$

donde cada integral en el RHS es medible con respecto al producto de la $\mathcal{A}_j$correspondiente a coordenadas en las que aún no se ha producido la integración. Mi libro dice que es una inducción simple, pero de alguna manera mi demostración parece complicada.

Creo que es suficiente considerar el caso de la permutación de identidad. Esto es porque tenemos la igualdad

$$\int f(\omega_1,\dots,\omega_n) \,d (\mu_1 \otimes \dots \otimes \mu_n)=\int f(\omega_{1},\dots,\omega_{n}) \,d (\mu_{j_1} \otimes \dots \otimes \mu_{j_n})$$

ver https://math.stackexchange.com/questions/3799818/does-order-matter-when-integrating-with-product-measures. En otras palabras, no importa si consideramos$f$ en función de $\Omega_1\times\dots\times\Omega_n$ o en $\Omega_{j_1}\times\dots\times\Omega_{j_n}$.

¿Es esto correcto? Los comentarios parecen indicar que hay múltiples enfoques posibles aquí. Cualquier esquema de prueba es muy apreciado.

Respuestas

1 KeeferRowan Sep 01 2020 at 03:43

Escribamos un enunciado del teorema de Tonelli, solo para aclarar todo.

Dejar $(X, \mathcal M, \mu)$ y $(Y, \mathcal N, \nu)$ ser $\sigma$-espacios de medida finita y $f: X \times Y \to [0,\infty]$ ser $\mathcal M \otimes \mathcal N$mensurable. Entonces: $$\int f d(\mu \times \nu) = \int \left(\int f(x_1, x_2) d\nu(x_2)\right) d\mu(x_1) = \int \left(\int f(x_1, x_2) d\mu(x_1)\right) d\nu(x_2).$$

Muy bien, ahora podemos escribir una prueba de su declaración. Dejar$(X_j, \mathcal M_j, \mu_j)$ ser una colección finita de $\sigma$-Espacios de medida finita y dejar $f : \prod_{j=1}^n X_j \to [0,\infty]$ ser $\bigotimes_{j=1}^n \mathcal M_j$ medible.

Tenga en cuenta que $\bigotimes_{j=1}^n \mathcal{M}_j = \mathcal M_1 \otimes \bigotimes_{j=2}^n \mathcal M_j$, ese $\mu_1 \times \mu_2 \times \cdots \times \mu_n = \mu_1 \times (\mu_2 \times \cdots \times \mu_n)$, y eso $(\prod_{j=2}^n X_j, \bigotimes_{j=2}^n \mathcal M_j, \mu_2 \times \cdots \mu_n)$ es $\sigma$-finito (esto es directo de probar el producto de $\sigma$-los espacios de medida finita son $\sigma$-finito e inducción).

Así, la aplicación repetida de la primera aplicación del teorema de Tonelli anterior (es decir, una inducción) da que: $$\int f d(\mu_1 \times \cdots \times \mu_n) = \int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_1(x_1)\right) \cdots \right) d\mu_n(x_n).$$

Ahora mostramos demostramos inductivamente que, bajo los supuestos de nuestra proposición, que: $$\int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_1(x_1)\right) \cdots \right) d\mu_n(x_n) = \int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_{\sigma(1)}(x_{\sigma(1)})\right) \cdots \right) d\mu_{\sigma(n)}(x_{\sigma(n)})$$ para cualquier permutación $\sigma \in S_n$.

Es claramente cierto para $n=1$.

Suponga que se ha demostrado para $n$, entonces escoge $\sigma \in S_{n+1}$. Entonces define$\tau \in S_n$ inductivamente por $\tau(1) = \sigma(1)$ Si $\sigma(1) \ne n+1$ más $\sigma(2)$ y $\tau(j+1) = \sigma(\sigma^{-1}(\tau(j))+1)$ Si $\sigma(\sigma^{-1}(\tau(j))+1) \ne n+1$ más $= \sigma(\sigma^{-1}(\tau(j))+2)$.

El resultado es que $\tau$ arregla $1,...,n$ en el mismo orden que $\sigma$. Luego aplicando la hipótesis inductiva con$\tau$ a la integral interior para cada $x_{n+1}$: $$\int \left (\int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_1(x_1)\right) \cdots \right) d\mu_n(x_n) \right) d\mu_{n+1}(x_{n+1}) = \int \left(\int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_{\tau(1)}(x_{\tau(1)})\right) \cdots \right) d\mu_{\tau(n)}(x_{\tau(n)})\right) d\mu_{n+1}(x_{n+1}).$$ Entonces desde $\tau$ poner $1,...,n$ en el mismo orden que $\sigma$, todo lo que queda por conseguir $1,...,n+1$ en el orden inducido por $\sigma$ es insertar $d\mu_{n+1}(x_{n+1})$ en el lugar correcto, para lo cual basta con mostrar que dos $d\mu_i(x_i)$ y $d\mu_j(x_j)$ se puede conmutar (luego conmutar repetidamente $d\mu_{n+1}(x_{n+1})$ izquierda hasta que esté en el lugar correcto termina la prueba).

Esto lo haremos ahora. Reclamación: $$\int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_a(x_1)\right) \cdots \bigg) d\mu_i \bigg) d\mu_j \cdots \right) d\mu_b(x_n) = \int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_a(x_1)\right) \cdots \bigg) d\mu_j \bigg) d\mu_i \cdots \right) d\mu_b(x_n).$$

Pero esto es solo una aplicación directa del teorema de Tonelli, ya que basta con mostrar que: $$\int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_a(x_1)\right) \cdots \bigg) d\mu_i \right) d\mu_j = \int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_a(x_1)\right) \cdots \bigg) d\mu_j \right) d\mu_i,$$ y tenemos: $$\int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_a(x_1)\right) \cdots \bigg) d\mu_i \right) d\mu_j = \int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_a(x_1)\right) \cdots \right) d\mu_j \times \mu_i = \int \left(\cdots \left(\int f(x_1,...,x_n) d\mu_a(x_1)\right) \cdots \bigg) d\mu_j \right) d\mu_i.$$

Poniéndolo junto completa la prueba.

Nota: Alternativamente, en lugar de todo eso $\tau$ cosas, podemos usar la afirmación final para mostrar que el conjunto de permutaciones de las medidas es un subgrupo que contiene permutaciones consecutivas: $(i, i+1)$ y luego demostrar que $(i, i+1)$ genera $S_n$, que efectivamente lo que hice en el "$\tau$-section ", aunque puede resultar un poco confuso.