Desenredamiento exponencial de operadores numéricos y operadores de creación y aniquilación
¿Hay alguna manera de desenredar la exponencial de la suma del número, el operador de aniquilación y creación? Por ejemplo,
$$e^{\alpha N + \beta a + \gamma a^\dagger } = e^{G a^\dagger}e^{A N}e^{B a}$$
dónde $G$, $A$y $B$ son cada una función de posiblemente los tres parámetros $\alpha$, $\beta$y $\gamma$.
Respuestas
No es una respuesta, sino un comentario extenso sobre su enfoque básicamente sólido, ya que el formato de comentario no permite comentarios tan extensos. El grupo involucrado es el grupo oscilador , y la representación 3d que encontró es fiel, por lo que cualquier relación de grupo también será válida para el grupo abstracto en general, así que, ¡ todas las representaciones ! Llamaré a su elemento central C de su respuesta Z , y puede filtrar todas las expresiones, desplazándose con todo.
La afirmación genérica respaldada por el teorema de Lie es que el producto de todos los elementos del grupo se acercará a un exponencial de alguna combinación lineal de todos los generadores en el álgebra de Lie , entonces, entonces,$$ 𝑒^{𝜃Z} 𝑒^{𝐺𝑎^†} 𝑒^{𝐴𝑁}𝑒^{𝐵𝑎}=𝑒^{𝜙'Z+𝛼𝑁+𝛽𝑎+𝛾𝑎^†}. $$Sin embargo, dado que Z conmuta con todo, podemos invertir el primer factor de lhs a la derecha e incorporarlo en un nuevo parámetro$\phi'-\theta=\phi$, de modo que $$ 𝑒^{𝐺𝑎^†} 𝑒^{𝐴𝑁}𝑒^{𝐵𝑎}=𝑒^{𝜙Z+𝛼𝑁+𝛽𝑎+𝛾𝑎^†}, \tag{*} $$ donde los parámetros $\phi,\alpha,\beta, \gamma$ están garantizados para ser funciones de $G,A,B$.
Ahora, por la nula potencia de los primeros tres generadores, y la diagonal del cuarto, el lado izquierdo se evalúa trivialmente como $$ e^{-A/2} \begin{bmatrix}e^A & G & BG\\0 &1 &B\\0 &0 &e^A\end{bmatrix}, $$ con determinante $e^{A/2}$.
Esto debe ser igual $$ \exp \begin{bmatrix} \alpha/2 & \gamma & -\phi\\0 &-\alpha/2 &\beta\\0 &0 &\alpha/2\end{bmatrix}. $$ Su determinante es $e^{\alpha/2}$ por la identidad $e^{\operatorname{Tr} M} = \det e^M$.
Ahora, a segundo orden en sus parámetros, se expande a $$ \begin{bmatrix}1+ \alpha/2 +\alpha^2/8& \gamma & -\phi-\phi\alpha/2+\beta\gamma/2\\0 &1-\alpha/2 +\alpha^2/8&\beta\\0 &0 &1+\alpha/2+\alpha^2/8\end{bmatrix}. $$
La comparación con el lado izquierdo anterior dicta, de segundo orden, $$A=\alpha, \qquad B=\beta e^{\alpha/2}, \qquad G=\gamma e^{\alpha/2},$$ pero luego te das cuenta de que la entrada de la parte superior derecha no coincide y requiere una $\phi$, $$ BGe^{-A/2}= \beta\gamma e^{\alpha/2}= \beta\gamma/2 -\phi(1+\alpha/2), $$para tomar el relevo. Uno tenía que ir al segundo orden para ver esto, ya que necesita al menos una conmutación$[a,a^\dagger]$ para producir el elemento central.
Por lo que entonces, $\phi$es realmente esencial en su expresión modificada (*): este no es un grado de libertad que pueda omitirse. Disculpas (con Pascal) por no tener tiempo para hacer el comentario más corto.
Creo que he encontrado un método utilizando las respuestas a estas dos preguntas:
https://mathoverflow.net/questions/163172/lie-group-about-the-quantum-harmonic-oscillator
¿Cómo funciona el desenredado y el reordenamiento de los operadores exponenciales?
Podemos mapear las siguientes matrices a los operadores de escalera:
$a^\dagger\equiv A=\left[\matrix{0 & 1 & 0\\0 &0 &0\\0 &0 &0}\right]$, $a \equiv B=\left[\matrix{0 & 0 & 0\\0 &0 &1\\0 &0 &0}\right]$, $I\equiv C=\left[\matrix{0 & 0 & -1\\0 &0 &0\\0 &0 &0}\right]$, $N\equiv D= \frac12\left[\matrix{1 & 0 & 0\\0 &-1 &0\\0 &0 &1}\right]$
Las matrices A, B, C, D satisfacen las relaciones de conmutación de los operadores de escalera. Luego evalúe el lado izquierdo y el lado derecho usando estas matrices y empareje los coeficientes. Parece funcionar, pero me gustaría alguna confirmación de que este es el enfoque correcto, ya que no tengo experiencia con las álgebras de mentiras.