Resolver ecuaciones diferenciales complejas con ParametricNDSolveValue
Estoy tratando de resolver una ecuación diferencial compleja para la función $S(u,v)$ dependiendo del parámetro $\omega$. El codigo es:
ClearAll["Global`*"]
m = 100;
L = 2;
r[u_, v_] = 2 m (1 + ProductLog[- ((u v)/E)]);
F[u_, v_] = (32 m^3)/r[u, v]^3 Exp[-(r[u, v]/(2 m))];
Vz[u_, v_] = FullSimplify [-2 (D[F[u, v], u] D[F[u, v], v])/F[u, v] +
4 D[r[u, v], u, v]/r[u, v] + 2/F[u, v] D[F[u, v], u, v] +
2/F[u, v] D[F[u, v], u] D[r[u, v], v] +
2/F[u, v] D[F[u, v], v] D[r[u, v], u]];
Z[u_, v_] = Exp[-I (u + v)/2 ω] S[u, v];
sol = ParametricNDSolveValue[{D[Z[u, v], u, v] +
F[u, v] (L (L + 1))/r[u, v]^2 Z[u, v] + Z[u, v] Vz[u, v] == 0,
S[u, -1] == 1, S[1, v] == 1},
S, {u, 1, 100}, {v, -100, -1}, ω]
Me sale el error
ParametricNDSolveValue :: mconly: "Para el método! (" IDA "), solo está disponible el código real de la máquina. No se puede continuar con valores complejos o más allá de las excepciones de punto flotante"
Entonces, parece que Mathematica espera números reales, pero en su lugar encuentra números complejos. ¿Cómo puedo resolver la ecuación diferencial?
Respuestas
Esta pregunta se puede abordar resolviendo en Z
lugar de S
dividir el PDE en sus partes real e imaginaria, y luego construirlo S
si se desea.
solr[ω_] := NDSolveValue[{D[Z[u, v], u, v] +
F[u, v] (L (L + 1))/r[u, v]^2 Z[u, v] + Z[u, v] Vz[u, v] == 0,
Z[u, -1] == Cos[1/2 (-1 + u) ω], Z[1, v] == Cos[1/2 (1 + v) ω]},
Z, {u, 1, 2}, {v, -2, -1}]
soli[ω_] := NDSolveValue[{D[Z[u, v], u, v] +
F[u, v] (L (L + 1))/r[u, v]^2 Z[u, v] + Z[u, v] Vz[u, v] == 0,
Z[u, -1] == -Sin[1/2 (-1 + u) ω], Z[1, v] == -Sin[1/2 (1 + v) ω]},
Z, {u, 1, 2}, {v, -2, -1}]
zr = solr[1];
Plot3D[zr[u, v], {u, 1, 2}, {v, -2, -1}, PlotRange -> All,
ImageSize -> Large, AxesLabel -> {u, v, z}, LabelStyle -> {15, Black, Bold}]

zi = soli[1];
Plot3D[zi[u, v], {u, 1, 2}, {v, -2, -1}, PlotRange -> All,
ImageSize -> Large, AxesLabel -> {u, v, z}, LabelStyle -> {15, Black, Bold}]

Dos notas. En primer lugar, los rangos de integración de u
y v
se han reducido en gran medida, porque la solución crece exponencialmente y Plot3D
falla. En segundo lugar, usar en ParametricNDSolveValue
lugar de SetDelayed
y NDSolveValue
hace que el kernel se bloquee.