Найдите ближайшую точку к береговой линии шейп-файла в Python
У меня есть рентгеновский снимок (674 латов и 488 латов), и я хочу найти ближайшее расстояние в метрах для каждой точки до береговой линии.
Я нашел это решение: поиск ближайшей точки к береговой линии шейп-файла Python
что в основном то, чем я хочу заниматься. Однако расстояние измеряется в градусах, а не в метрах ( см. Здесь ).
Я мог бы преобразовать градусы в метры, используя 1 градус = 111 км, но это было бы не очень точно для больших областей и областей южнее.
Мой рабочий пример ниже:
import geopandas as gpd
from shapely.geometry import Point, box
from random import uniform
from concurrent.futures import ThreadPoolExecutor
from tqdm.notebook import tqdm
import cartopy
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
import pandas as pd
lon = np.arange(129.4, 153.75+0.05, 0.05)
lat = np.arange(-43.75, -10.1+0.05, 0.05)
precip = 10 * np.random.rand(len(lat), len(lon))
ds = xr.Dataset({"precip": (["lat", "lon"], precip)},coords={"lon": lon,"lat": lat})
ds['precip'].plot()
def get_distance_to_coast(arr):
def compute_distance(point):
point['dist_to_coastline'] = point['geometry'].distance(coastline)
return point
print('Get shape file...')
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
#single geom for Norway
aus = world[world["name"]=="Australia"].dissolve(by='name').iloc[0].geometry
#single geom for the coastline
c = cartopy.io.shapereader.natural_earth(resolution='50m', category='physical', name='coastline')
c = gpd.read_file(c)
c.crs = 'EPSG:4326'
print('Get coastline...')
coastline = gpd.clip(c.to_crs('EPSG:4326'), aus.buffer(0.25)).iloc[0].geometry
print('Group lat/lon points...')
points = []
i = 0
for ilat in arr['lat']:
for ilon in arr['lon']:
points.append({'id':i, 'geometry':Point(ilon,ilat)})
i+=1
print('Computing distances...')
with ThreadPoolExecutor(max_workers=4) as tpe:
result = list(tqdm(tpe.map(compute_distance, points), desc="computing distances", total=len(points)))
gdf = gpd.GeoDataFrame.from_records(result)
print('Convert to xarray...')
lon = gdf['geometry'].x
lat = gdf['geometry'].y
df1 = pd.DataFrame(gdf)
df1['lat'] = lat
df1['lon'] = lon
df1 = df1.drop(columns=['id','geometry'])
df1 = df1.set_index(['lat', 'lon'])
xarr = df1.to_xarray()
return xarr
dist = get_distance_to_coast(ds['precip'])
plt.figure()
dist['dist_to_coastline'].plot()
plt.show()
Я предполагаю заменить на point['geometry'].distance(coastline)
что-то, используя функцию гаверсинуса, но я понятия не имею, как это сделать, особенно что-то наполовину эффективное.
Ответы
Вы можете использовать пакет haversine , он довольно прост в использовании. Из их документации:
from haversine import haversine, Unit
lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
haversine(lyon, paris) # in kilometers
так что для того, что вы хотите, вам понадобится:
haversine(lyon, paris, unit=Unit.METERS) # in meters
Я нашел достаточно быстрое решение, объединив ответы в https://stackoverflow.com/questions/44681828/efficient-computation-of-minimum-of-haversine-distances
и
Поиск ближайшей точки к береговой линии шейп-файла Python
Код, который теперь работает, выглядит так:
import geopandas as gpd
from shapely.geometry import Point, box
from random import uniform
from concurrent.futures import ThreadPoolExecutor
from tqdm.notebook import tqdm
import cartopy
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
import pandas as pd
import shapely
lon = np.arange(129.4, 153.75+0.05, 0.25)
lat = np.arange(-43.75, -10.1+0.05, 0.25)
precip = 10 * np.random.rand(len(lat), len(lon))
ds = xr.Dataset({"precip": (["lat", "lon"], precip)},coords={"lon": lon,"lat": lat})
ds['precip'].plot()
def hv(lonlat1, lonlat2):
AVG_EARTH_RADIUS = 6371000. # Earth radius in meter
# Get array data; convert to radians to simulate 'map(radians,...)' part
coords_arr = np.deg2rad(lonlat1)
a = np.deg2rad(lonlat2)
# Get the differentiations
lat = coords_arr[:,1] - a[:,1,None]
lng = coords_arr[:,0] - a[:,0,None]
# Compute the "cos(lat1) * cos(lat2) * sin(lng * 0.5) ** 2" part.
# Add into "sin(lat * 0.5) ** 2" part.
add0 = np.cos(a[:,1,None])*np.cos(coords_arr[:,1])* np.sin(lng * 0.5) ** 2
d = np.sin(lat * 0.5) ** 2 + add0
# Get h and assign into dataframe
h = 2 * AVG_EARTH_RADIUS * np.arcsin(np.sqrt(d))
return {'dist_to_coastline': h.min(1), 'lonlat':lonlat2}
def get_distance_to_coast(arr, country, resolution='50m'):
print('Get shape file...')
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
#single geom for country
geom = world[world["name"]==country].dissolve(by='name').iloc[0].geometry
#single geom for the coastline
c = cartopy.io.shapereader.natural_earth(resolution=resolution, category='physical', name='coastline')
c = gpd.read_file(c)
c.crs = 'EPSG:4326'
print('Group lat/lon points...')
points = []
i = 0
for ilat in arr['lat'].values:
for ilon in arr['lon'].values:
points.append([ilon, ilat])
i+=1
xlist = []
gdpclip = gpd.clip(c.to_crs('EPSG:4326'), geom.buffer(1))
for icoast in range(len(gdpclip)):
print('Get coastline ({}/{})...'.format(icoast+1, len(gdpclip)))
coastline = gdpclip.iloc[icoast].geometry #< This is a linestring
if type(coastline) is shapely.geometry.linestring.LineString:
coastline = [list(i) for i in coastline.coords]
elif type(coastline) is shapely.geometry.multilinestring.MultiLineString:
dummy = []
for line in coastline:
dummy.extend([list(i) for i in line.coords])
coastline = dummy
else:
print('In function: get_distance_to_coast')
print('Type: {} not found'.format(type(type(coastline))))
exit()
print('Computing distances...')
result = hv(coastline, points)
print('Convert to xarray...')
gdf = gpd.GeoDataFrame.from_records(result)
lon = [i[0] for i in gdf['lonlat']]
lat = [i[1] for i in gdf['lonlat']]
df1 = pd.DataFrame(gdf)
df1['lat'] = lat
df1['lon'] = lon
df1 = df1.set_index(['lat', 'lon'])
xlist.append(df1.to_xarray())
xarr = xr.concat(xlist, dim='icoast').min('icoast')
xarr = xarr.drop('lonlat')
return xr.merge([arr, xarr])
dist = get_distance_to_coast(ds['precip'], 'Australia')
plt.figure()
dist['dist_to_coastline'].plot()
plt.show()
Надеюсь, это может помочь кому-то в будущем!