Artık sonlu grupların epimorfizm dizisi stabilize olur
İzin Vermek $G_1 \to G_2 \to \cdots$sonlu olarak üretilmiş artık sonlu grupların epimorfizm dizisi olabilir. Sonunda stabilize oluyor mu? Yani, sonlu sayıda epimorfizm dışında hepsi aslında izomorfizm midir?
Sonlu üretilen artık sonlu grupların Hopfian olduğuna dikkat edin, bu nedenle bu, her birinin basit karşı örneğini hariç tutar. $G_i$ sabit bir grup ve her epimorfizm kendi üzerine sabitlenmiş bir gruptur.
Gruplar artık özgür olduğunda benzer sonuç geçerlidir: bu, Charpentier Guirardel "Serbest grupların sınırları olarak sınır grupları" ndaki Önerme 6.8'dir . Kanıt yalnızca, artık özgür grupların artık$SL_2(\mathbb{C})$ve her birinin bulunduğu duruma uyarlanabileceği görülüyor. $G_i$ artık $GL_n(\mathbb{C})$ sabit için $n$. Bunun genel yerleşik sonlu gruplar için geçerli olması pek olası görünmüyor: Jordan-Schur Teoremi , genel sonlu bir grup için minimum derecenin$n$ öyle ki içine gömülür $GL_n(\mathbb{C})$ keyfi olarak büyük olabilir.
Kanıtı uyarlamanın başka bir yolu var mı? Bir karşı örnek var mı?
Yanıtlar
Cevap hayır". Lamplighter grubu (sonsuza kadar sunulan), sanal olarak serbest grupların ve örten homomorfizmlerin bir dizisinin bir sınırıdır (örneğin, bu soru ve oradaki yanıtlara bakın ). Neredeyse özgür olan tüm gruplar artık sonludur.
Dodd'ın cevabı ile aynı şekilde, ikinci Houghton grubundan bir karşı örnek de çıkarılabilir. $H_2$, bijections grubu olarak tanımlanan $L^{(0)} \to L^{(0)}$ bi-infinite çizgisindeki sonlu çiftler hariç tümü için bitişikliği ve bitişik olmayışı koruyan $L$. Sunumu$H_2$ dır-dir $$\left\langle \sigma_i (i \in \mathbb{Z}), t \left| \array{ \sigma_i^2=1, \ i \in \mathbb{Z} \\ [\sigma_i,\sigma_j]=1, \ |i-j| \geq 2}, \ \array{\sigma_i\sigma_{i+1}\sigma_i= \sigma_{i+1}\sigma_i \sigma_{i+1} = 1, \ i \in \mathbb{Z} \\ t\sigma_it^{-1}= \sigma_{i+1}, \ i \in \mathbb{Z}} \right. \right\rangle$$ nerede $t$ bir birim çevirisine karşılık gelir ve $\sigma_i$ permütasyona $(i,i+1)$. Şimdi sunuyu kısaltın ve$G_n$ üzerinden $$\left\langle \sigma_i (i \in \mathbb{Z}), t \left| \array{ \sigma_i^2=1, \ i \in \mathbb{Z} \\ [\sigma_i,\sigma_j]=1, \ n \geq |i-j| \geq 2}, \ \array{\sigma_i\sigma_{i+1}\sigma_i= \sigma_{i+1}\sigma_i \sigma_{i+1} = 1, \ i \in \mathbb{Z} \\ t\sigma_it^{-1}= \sigma_{i+1}, \ i \in \mathbb{Z}} \right. \right\rangle.$$ İlişkileri kullanarak $t\sigma_it^{-1}=\sigma_{i+1}$ jeneratörleri çıkarmak için $\sigma_0,\sigma_{-1},\ldots$ ve $\sigma_{n+2},\sigma_{n+3},\ldots$, aşağıdaki sunumunu bulduk $G_n$: $$\left\langle \sigma_1, \ldots, \sigma_{n+1}, t \left| \array{ \sigma_i^2=1, \ 1 \leq i \leq n+1 \\ [\sigma_i,\sigma_j]=1, \ |i-j| \geq 2}, \ \array{\sigma_i\sigma_{i+1}\sigma_i= \sigma_{i+1}\sigma_i \sigma_{i+1} = 1, \ 1 \leq i \leq n \\ t\sigma_it^{-1}= \sigma_{i+1}, \ 1 \leq i \leq n} \right. \right\rangle.$$ Bu sunumdan şunu gözlemleyin: $G_n$ bir HNN uzantısı olarak ayrışır $$\left\langle \sigma_1,\ldots, \sigma_{n+1} \left| \array{ \sigma_i^2=1, \ 1 \leq i \leq n+1 \\ [\sigma_i,\sigma_j]=1, \ |i-j| \geq 2}, \ \sigma_i\sigma_{i+1}\sigma_i= \sigma_{i+1}\sigma_i \sigma_{i+1} = 1, \ 1 \leq i \leq n \right. \right\rangle,$$ simetrik gruba izomorfik olduğu ortaya çıkıyor $\mathfrak{S}_{n+2}$, sabit harf birleştiği yerde $\langle \sigma_1,\ldots, \sigma_n \rangle$ -e $\langle \sigma_2, \ldots, \sigma_{n+1} \rangle$. Böylece, sonlu bir grubun HNN uzantısı olarak,$G_n$ neredeyse ücretsiz olmalıdır.
Sonuç, kanonik bölüm haritalarının $G_1 \twoheadrightarrow G_2 \twoheadrightarrow \cdots$ neredeyse serbest gruplar arasında stabilize olmayan bir epimorfizm dizisini tanımlar.
Not: Yukarıdaki argümanı lamba ışığı grubu ile neredeyse kelimesi kelimesine yeniden üreterek$\mathbb{Z}_2 \wr \mathbb{Z}$ Houghton grubu yerine $H_2$aynı sonucu sağlar. Bunun nedeni, bu grupların benzer bir yapıya sahip olmalarıdır:$C \rtimes \mathbb{Z}$ bazı yerel olarak sonlu Coxeter grupları için $C$ nerede $\mathbb{Z}$ Üzerinde davranır $C$ tanımlayan grafiğin bir izometrisi aracılığıyla $C$. (Kabaca konuşmak gerekirse, bu formun diğer tüm grupları,$\mathbb{Z}_2 \wr \mathbb{Z}$ ve $H_2$yani bu yönde başka ilginç örnekler yok.)