SQL Suchen Sie Zeilenpaare mit der nächstbesten Zeitstempelübereinstimmung

Aug 16 2020

Meine Herausforderung besteht darin, Zeilenpaare zu finden, die neben dem Zeitstempel liegen, und nur die Paare mit dem minimalen Abstand eines Wertefelds beizubehalten (positive Werte der Differenz).

Eine Tabelle measurementsammelt Daten von verschiedenen Sensoren mit einem Zeitstempel und einem Wert.

id | sensor_id | timestamp | value
---+-----------+-----------+------
 1 |         1 | 12:00:00  |     5
 2 |         2 | 12:01:00  |     6
 3 |         1 | 12:02:00  |     4
 4 |         2 | 12:02:00  |     7
 5 |         2 | 12:03:00  |     3
 6 |         1 | 12:05:00  |     3
 7 |         2 | 12:06:00  |     4
 8 |         2 | 12:07:00  |     5
 9 |         1 | 12:08:00  |     6

Der Wert eines Sensors ist vom Zeitstempel bis zum Zeitstempel seines nächsten Datensatzes gültig (gleiche sensor_id).

Grafische Darstellung

Die untere grüne Linie zeigt den Abstand der Werte von Sensor 1 (blaue Linie) und Sensor 2 (rote Linie) über die Zeit.

Mein Ziel ist

  1. um nur die Datensätze von 2 Sensoren zu kombinieren, die mit der Zeitstempellogik übereinstimmen (um die grüne Linie zu erhalten)
  2. um die lokalen Mindestanforderungen zu finden
    • 12:01:00 (um 12:00:00 gibt es keine Aufzeichnung für Sensor 2)
    • 12:05:00
    • 12:08:00

Die reale Tabelle befindet sich in einer PostgreSQL-Datenbank und enthält ungefähr 5 Millionen Datensätze von 15 Sensoren.

Testdaten

create table measurement (
    id serial,
    sensor_id integer,
    timestamp timestamp,
    value integer)
;

insert into measurement (sensor_id, timestamp, value)
values
(1, '2020-08-16 12:00:00', 5),
(2, '2020-08-16 12:01:00', 6),
(1, '2020-08-16 12:02:00', 4),
(2, '2020-08-16 12:02:00', 7),
(2, '2020-08-16 12:03:00', 3),
(1, '2020-08-16 12:05:00', 3),
(2, '2020-08-16 12:06:00', 4),
(2, '2020-08-16 12:07:00', 5),
(1, '2020-08-16 12:08:00', 6)
;

Mein Ansatz

war, 2 beliebige Sensoren (durch bestimmte sensor_ids) auszuwählen, eine Selbstverbindung herzustellen und für die Aufzeichnung von Sensor 1 nur die Aufzeichnung von Sensor 2 mit dem vorherigen Zeitstempel beizubehalten (größte Zeitstempel von Sensor 2 mit dem Zeitstempel von Sensor 1 <= Zeitstempel von Sensor 2) .

select
*
from (
    select
    *,
    row_number() over (partition by m1.timestamp order by m2.timestamp desc) rownum
    from measurement m1
    join measurement m2
        on m1.sensor_id <> m2.sensor_id
        and m1.timestamp >= m2.timestamp
    --arbitrarily sensor_ids 1 and 2
    where m1.sensor_id = 1
    and m2.sensor_id = 2
) foo
where rownum = 1

union --vice versa

select
*
from (
    select
    *,
    row_number() over (partition by m2.timestamp order by m1.timestamp desc) rownum
    from measurement m1
    join measurement m2
        on m1.sensor_id <> m2.sensor_id
        and m1.timestamp <= m2.timestamp
    --arbitrarily sensor_ids 1 and 2
    where m1.sensor_id = 1
    and m2.sensor_id = 2
) foo
where rownum = 1
;

Dies gibt jedoch ein Paar zurück, bei 12:00:00dem Sensor 2 keine Daten hat (kein großes Problem)
und auf der realen Tabelle die Ausführung der Anweisung nicht nach Stunden endet (großes Problem).

Ich habe bestimmte ähnliche Fragen gefunden, aber sie passen nicht zu meinem Problem

  • SQL Join on Am nächsten als Datum
  • SQL Verbinden Sie dieselbe Tabelle basierend auf Zeitstempel und Inventar

Danke im Voraus!

Antworten

2 GordonLinoff Aug 17 2020 at 00:30

Der erste Schritt besteht darin, die Differenz bei jedem Zeitstempel zu berechnen. Eine Methode verwendet eine laterale Verknüpfung und eine bedingte Aggregation:

select t.timestamp,
       max(m.value) filter (where s.sensor_id = 1) as value_1,
       max(m.value) filter (where s.sensor_id = 2) as value_2,
       abs(max(m.value) filter (where s.sensor_id = 2) -
           max(m.value) filter (where s.sensor_id = 1)
          ) as diff
from (values (1), (2)) s(sensor_id) cross join
     (select distinct timestamp
      from measurement
      where sensor_id in (1, 2)
     ) t left join lateral
     (select m.value
      from measurement m 
      where m.sensor_id = s.sensor_id and
            m.timestamp <= t.timestamp
      order by m.timestamp desc
      limit 1 
     ) m
     on 1=1
group by timestamp;

Nun stellt sich die Frage, wann die Differenz ein lokales Minimum erreicht. Für Ihre Beispieldaten sind die lokalen Minima alle eine Zeiteinheit lang. Das bedeutet, dass Sie sie verwenden lag()und lead()finden können:

with t as (
      select  t.timestamp,
              max(m.value) filter (where s.sensor_id = 1) as value_1,
              max(m.value) filter (where s.sensor_id = 2) as value_2,
              abs(max(m.value) filter (where s.sensor_id = 2) -
                  max(m.value) filter (where s.sensor_id = 1)
                 ) as diff
      from (values (1), (2)) s(sensor_id) cross join
           (select distinct timestamp
            from measurement
            where sensor_id in (1, 2)
           ) t left join lateral
           (select m.value
            from measurement m 
            where m.sensor_id = s.sensor_id and
                  m.timestamp <= t.timestamp
            order by m.timestamp desc
            limit 1 
           ) m
           on 1=1
      group by timestamp
     )
select *
from (select t.*,
             lag(diff) over (order by timestamp) as prev_diff,
             lead(diff) over (order by timestamp) as next_diff
      from t
     ) t
where (diff < prev_diff or prev_diff is null) and
      (diff < next_diff or next_diff is null);

Dies ist möglicherweise keine vernünftige Annahme. Filtern Sie also benachbarte doppelte Werte heraus, bevor Sie diese Logik anwenden:

select *
from (select t.*,
             lag(diff) over (order by timestamp) as prev_diff,
             lead(diff) over (order by timestamp) as next_diff
      from (select t.*, lag(diff) over (order by timestamp) as test_for_dup
            from t
           ) t
      where test_for_dup is distinct from diff
     ) t
where (diff < prev_diff or prev_diff is null) and
      (diff < next_diff or next_diff is null)

Hier ist eine db <> Geige.

2 TheImpaler Aug 16 2020 at 16:14

Sie können einige seitliche Verbindungen verwenden. Zum Beispiel:

with
t as (select distinct timestamp as ts from measurement)
select
  t.ts, s1.value as v1, s2.value as v2,
  abs(s1.value - s2.value) as distance
from t,
lateral (
  select value
  from measurement m 
  where m.sensor_id = 1 and m.timestamp <= t.ts
  order by timestamp desc
  limit 1
) s1,
lateral (
  select value
  from measurement m 
  where m.sensor_id = 2 and m.timestamp <= t.ts
  order by timestamp desc
  limit 1
) s2
order by t.ts

Ergebnis:

ts                     v1  v2  distance
---------------------  --  --  --------
2020-08-16 12:01:00.0   5   6         1
2020-08-16 12:02:00.0   4   7         3
2020-08-16 12:03:00.0   4   3         1
2020-08-16 12:05:00.0   3   3         0
2020-08-16 12:06:00.0   3   4         1
2020-08-16 12:07:00.0   3   5         2
2020-08-16 12:08:00.0   6   5         1

Siehe laufendes Beispiel bei DB Fiddle .

Wenn Sie alle Zeitstempel möchten , auch solche, die nicht übereinstimmen, 12:00:00können Sie Folgendes tun:

with
t as (select distinct timestamp as ts from measurement)
select
  t.ts, s1.value as v1, s2.value as v2,
  abs(s1.value - s2.value) as distance
from t
left join lateral (
  select value
  from measurement m 
  where m.sensor_id = 1 and m.timestamp <= t.ts
  order by timestamp desc
  limit 1
) s1 on true
left join lateral (
  select value
  from measurement m 
  where m.sensor_id = 2 and m.timestamp <= t.ts
  order by timestamp desc
  limit 1
) s2 on true
order by t.ts

In diesen Fällen ist es jedoch nicht möglich, die Entfernung zu berechnen.

Ergebnis:

ts                     v1      v2  distance
---------------------  --  ------  --------
2020-08-16 12:00:00.0   5  <null>    <null>
2020-08-16 12:01:00.0   5       6         1
2020-08-16 12:02:00.0   4       7         3
2020-08-16 12:03:00.0   4       3         1
2020-08-16 12:05:00.0   3       3         0
2020-08-16 12:06:00.0   3       4         1
2020-08-16 12:07:00.0   3       5         2
2020-08-16 12:08:00.0   6       5         1
1 MikeOrganek Aug 16 2020 at 16:22

Das Auffüllen fehlender Werte erfordert Fensterfunktionen und ein kartesisches Produkt jeder Minute, das mit Ihren beiden Sensoren gekreuzt wird.

Das invarscte akzeptiert die Parameter.

with invars as (
  select '2020-08-16 12:00:00'::timestamp as start_ts,
         '2020-08-16 12:08:00'::timestamp as end_ts,
         array[1, 2] as sensor_ids
), 

Erstellen Sie die Matrix von minutexsensor_id

calendar as (
  select g.minute, s.sensor_id, 
         sensor_ids[1] as sid1,
         sensor_ids[2] as sid2
    from invars i
   cross join generate_series(
           i.start_ts, i.end_ts, interval '1 minute'
         ) as g(minute)
   cross join unnest(i.sensor_ids) as s(sensor_id)
),

Suchen Sie mgrpfür jedes Mal, wenn ein neuer Wert von a verfügbar istsensor_id

gaps as (
  select c.minute, c.sensor_id, m.value,
         sum(case when m.value is null then 0 else 1 end)
            over (partition by c.sensor_id 
                      order by c.minute) as mgrp,
         c.sid1, c.sid2
    from calendar c
         left join measurement m
                on m.timestamp = c.minute 
               and m.sensor_id = c.sensor_id
), 

Interpolieren Sie fehlende Werte, indem Sie den neuesten Wert übertragen

interpolated as (
  select minute, 
         sensor_id,
         coalesce(
           value, first_value(value) over
                    (partition by sensor_id, mgrp
                         order by minute)
         ) as value, sid1, sid2
    from gaps
)

Führen Sie die distanceBerechnung durch ( sum()könnte gewesen sein max()oder min()- es macht keinen Unterschied.

select minute,
       sum(value) filter (where sensor_id = sid1) as value1,
       sum(value) filter (where sensor_id = sid2) as value2, 
       abs(
         sum(value) filter (where sensor_id = sid1) 
         - sum(value) filter (where sensor_id = sid2)
       ) as distance
  from interpolated
 group by minute
 order by minute;

Ergebnisse:

| minute                   | value1 | value2 | distance |
| ------------------------ | ------ | ------ | -------- |
| 2020-08-16T12:00:00.000Z | 5      |        |          |
| 2020-08-16T12:01:00.000Z | 5      | 6      | 1        |
| 2020-08-16T12:02:00.000Z | 4      | 7      | 3        |
| 2020-08-16T12:03:00.000Z | 4      | 3      | 1        |
| 2020-08-16T12:04:00.000Z | 4      | 3      | 1        |
| 2020-08-16T12:05:00.000Z | 3      | 3      | 0        |
| 2020-08-16T12:06:00.000Z | 3      | 4      | 1        |
| 2020-08-16T12:07:00.000Z | 3      | 5      | 2        |
| 2020-08-16T12:08:00.000Z | 6      | 5      | 1        |

---

[View on DB Fiddle](https://www.db-fiddle.com/f/p65hiAFVT4v3TrjTPbrZnC/0)

Bitte sehen Sie diese funktionierende Geige .

1 wildplasser Aug 16 2020 at 16:40

Fensterfunktionen und Überprüfung der Nachbarn. (Sie benötigen ein zusätzliches Anti-Self-Join, um die Duplikate zu entfernen und einen Tie-Breaker für das Problem der stabilen Ehe zu erfinden. )


SELECT id,sensor_id, ztimestamp,value
        -- , prev_ts, next_ts
        , (ztimestamp - prev_ts) AS prev_span
        , (next_ts - ztimestamp) AS next_span
        , (sensor_id <> prev_sensor) AS prev_valid
        , (sensor_id <> next_sensor) AS next_valid
        , CASE WHEN (sensor_id <> prev_sensor AND sensor_id <> next_sensor) THEN
                CASE WHEN (ztimestamp - prev_ts) < (next_ts - ztimestamp) THEN prev_id ELSE next_id END
        WHEN (sensor_id <> prev_sensor) THEN prev_id
        WHEN (sensor_id <> next_sensor) THEN next_id
        ELSE NULL END AS best_neigbor
 FROM (
        SELECT id,sensor_id, ztimestamp,value
        , lag(id) OVER www AS prev_id
        , lead(id) OVER www AS next_id
        , lag(sensor_id) OVER www AS prev_sensor
        , lead(sensor_id) OVER www AS next_sensor
        , lag(ztimestamp) OVER www AS prev_ts
        , lead(ztimestamp) OVER www AS next_ts
        FROM measurement
        WINDOW www AS (order by ztimestamp)
        ) q
ORDER BY ztimestamp,sensor_id
        ;

Ergebnis:


DROP SCHEMA
CREATE SCHEMA
SET
CREATE TABLE
INSERT 0 9
 id | sensor_id |     ztimestamp      | value | prev_span | next_span | prev_valid | next_valid | best_neigbor 
----+-----------+---------------------+-------+-----------+-----------+------------+------------+--------------
  1 |         1 | 2020-08-16 12:00:00 |     5 |           | 00:01:00  |            | t          |            2
  2 |         2 | 2020-08-16 12:01:00 |     6 | 00:01:00  | 00:01:00  | t          | t          |            3
  3 |         1 | 2020-08-16 12:02:00 |     4 | 00:01:00  | 00:00:00  | t          | t          |            4
  4 |         2 | 2020-08-16 12:02:00 |     7 | 00:00:00  | 00:01:00  | t          | f          |            3
  5 |         2 | 2020-08-16 12:03:00 |     3 | 00:01:00  | 00:02:00  | f          | t          |            6
  6 |         1 | 2020-08-16 12:05:00 |     3 | 00:02:00  | 00:01:00  | t          | t          |            7
  7 |         2 | 2020-08-16 12:06:00 |     4 | 00:01:00  | 00:01:00  | t          | f          |            6
  8 |         2 | 2020-08-16 12:07:00 |     5 | 00:01:00  | 00:01:00  | f          | t          |            9
  9 |         1 | 2020-08-16 12:08:00 |     6 | 00:01:00  |           | t          |            |            8
(9 rows)