Como acercarse $\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}$?

Aug 21 2020

@User mencionó en los comentarios que

$$\sum _{n=1}^{\infty } \frac{16^n}{n^3 \binom{2 n}{n}^2}=8\pi\text{G}-14 \zeta (3)\tag1$$

$$\small{\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}=64 \pi \Im(\text{Li}_3(1+i))+64 \text{Li}_4\left(\frac{1}{2}\right)-233 \zeta(4)-40 \ln ^2(2)\zeta(2)+\frac{8}{3}\ln ^4(2)}\tag2$$

Pude probar $(1)$ pero tuve algunas dificultades para probar $(2)$. ¿Alguna idea?

Voy a mostrar mi prueba de $(1)$ esperando que te ayude a demostrar $(2)$:

Mostramos en esta pregunta que

$$\sum_{n=1}^\infty\frac{4^ny^n}{n^2{2n\choose n}}=2\int_0^y \frac{\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}dx$$

multiplica ambos lados por $\frac{1}{y\sqrt{1-y}}$ luego $\int_0^1$ con respecto a $y$ y use $\int_0^1\frac{y^{n-1}}{\sqrt{1-y}}dy=\frac{4^n}{n{2n\choose n}}$ obtenemos

$$\sum _{n=1}^{\infty } \frac{16^n}{n^3 \binom{2 n}{n}^2}=2\int_0^1\int_0^y \frac{\arcsin \sqrt{x}}{y\sqrt{x}\sqrt{1-x}\sqrt{1-y}}dxdy$$

$$=2\int_0^1\frac{\arcsin\sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(\int_x^1\frac{dy}{y\sqrt{1-y}}\right)dx$$

$$=2\int_0^1\frac{\arcsin\sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(2\ln(1+\sqrt{1-x})-\ln x\right)dx$$

$$\overset{\sqrt{x}=\sin \theta}{=}8\int_0^{\pi/2}x\ln(1+\cos x)dx-8\int_0^{\pi/2}x\ln(\sin x)dx$$

$$=8\int_0^{\pi/2}x\ln(2\cos^2\frac x2)dx-8\int_0^{\pi/2}x\ln(\sin x)dx$$

$$=32\int_0^{\pi/4}x\ln(2\cos^2x)dx-8\int_0^{\pi/2}x\ln(\sin x)dx$$

$$=32\underbrace{\int_0^{\pi/4}x\ln(2)dx}_{\frac3{16}\ln(2)\zeta(2)}+64\underbrace{\int_0^{\pi/4}x\ln(\cos x)dx}_{\frac{\pi}{8}\text{G}-\frac3{16}\ln(2)\zeta(2)-\frac{21}{128}\zeta(3)}-8\underbrace{\int_0^{\pi/2}x\ln(\sin x)dx}_{\frac7{16}\zeta(3)-\frac34\ln(2)\zeta(2)}$$

$$=8\pi\text{G}-14 \zeta (3)$$

Las dos últimas integrales se derivan del uso de la serie de Fourier de $\ln(\cos x)$ y $\ln(\sin x)$.

Se agradecen todos los enfoques. Gracias.


Anexo: aquí hay una manera más fácil de probar $(1)$:

Tenemos

$$\arcsin^2(x)=\frac12\sum_{n=1}^\infty\frac{(2x)^{2n}}{n^2{2n\choose n}}$$

o

$$\sum_{n=1}^\infty\frac{4^nx^n}{n^2{2n\choose n}}=2\arcsin^2(\sqrt{x})$$

Divide ambos lados por $x\sqrt{1-x}$ luego $\int_0^1$ y use $\int_0^1\frac{x^{n-1}}{\sqrt{1-x}}dx=\frac{4^n}{n{2n\choose n}}$ tenemos

$$\sum_{n=1}^\infty\frac{16^n}{n^3{2n\choose n}^2}=2\int_0^1\frac{\arcsin^2(\sqrt{x})}{x\sqrt{1-x}}dx$$

$$\overset{\sqrt{x}=\sin x}{=}4\int_0^{\pi/2}x^2 \csc(x)dx$$

$$\overset{IBP}{=}-8\int_0^{\pi/4} x\ln(\tan\frac x2)dx=8\pi\text{G}-14\zeta(3)$$

donde el último resultado se sigue de la serie de Fourier de $\ln(\tan\frac x2)$.

Respuestas

7 user97357329 Aug 22 2020 at 06:01

Demasiado tiempo para un comentario (de Cornel )

Bueno, las herramientas elementales presentadas por OP son suficientes para obtener una reducción inmediata a integrales simples mediante integraciones simples por partes y cambio de orden de integración. Entonces, la serie es igual a$$\sum _{n=1}^{\infty } \frac{16^n}{\displaystyle n^4 \binom{2 n}{n}^2}=\int _0^1\frac{1}{z\sqrt{1-z}}\left(\int _0^z\frac{1}{y}\left(\int _0^y\frac{2 \arcsin(\sqrt{x})}{\sqrt{x (1-x)}}\textrm{d}x \right)\textrm{d}y \right)\textrm{d}z$$ $$=-32\int_0^1 \frac{\arctan^2(x)\log (x)}{x} \textrm{d}x-\frac{64}{3} \int_0^1 \arctan^3(x) \textrm{d}x-\frac{64}{3} \int_0^1 \arctan^3(x)\log (x)\textrm{d}x,$$

y el resultado deseado se deriva de usar ese

$$\int_0^{1} \frac{\arctan(x)^2\log (x)}{x} \textrm{d}x$$ $$=\operatorname{Li}_4\left(\frac{1}{2}\right)+\frac{1}{24}\log ^4(2)+\frac{7}{8}\log (2)\zeta (3) -\frac{151 }{11520}\pi ^4-\frac{1}{24}\log ^2(2)\pi ^2,$$que requiere algunas técnicas especiales. Por ejemplo, el usuario Song ya ha publicado en el sitio una solución en la que la integración de contornos se explota inteligentemente, pero también son posibles otras formas inteligentes.

Luego,

$$\int_0^1 \arctan^3(x) \textrm{d}x=\frac{\pi ^3}{64}+\frac{3}{32} \pi ^2 \log (2)-\frac{3 }{4}\pi G+\frac{63 }{64}\zeta(3),$$

lo cual es trivial (cambio variable y serie de Fourier).

Próximo,

$$ \int_0^1 \arctan^3(x)\log (x)\textrm{d}x$$ $$=\frac{3 }{4}\pi G-\frac{3}{32} \log (2)\pi ^2+\frac{3}{8} \log ^2(2) \pi ^2-\frac{\pi ^3}{64}+\frac{361 }{2560}\pi ^4-\frac{63 }{64}\zeta (3)-\frac{21}{16} \log (2)\zeta (3) -\frac{3}{16}\log ^4(2)-3 \pi \Im\{\text{Li}_3(1+i)\}-\frac{9 }{2}\operatorname{Li}_4\left(\frac{1}{2}\right),$$que combinan series de Fourier y el método de Variable Aleatoria en esta publicación Buscando formas cerradas de$\int_0^{\pi/4}\ln^2(\sin x)\,dx$ y $\int_0^{\pi/4}\ln^2(\cos x)\,dx$. La serie de Fourier del libro, (Casi) Imposibles Integrales, Sumas y Series , página$243$, eq. $3.281$, también puede resultar extremadamente útil después de la transformación integral en una trigonométrica. Además, es bueno saber que en lugar de la forma de Random Variable donde sea necesario, podemos intentar ajustar y usar la estrategia en esta publicación,https://math.stackexchange.com/q/3798026.

Una primera nota: por medios similares, se puede calcular la versión,$$\displaystyle \sum _{n=1}^{\infty } \frac{16^n}{\displaystyle n^5 \binom{2 n}{n}^2}.$$

Una segunda nota: la mayoría de las integrales y series aparentemente avanzadas que vuelan por el sitio en este período de tiempo son fácilmente manejables, principalmente mediante técnicas simples. Por ejemplo, se pueden calcular series de pesos armónicos no triviales avanzados,$8$, $9$, $10$, $11$, $12$solo combinando y usando identidades elementales con números armónicos, no es necesario nada avanzado . Sin duda, los métodos avanzados también son aceptados y apreciados.

3 AliShadhar Aug 26 2020 at 01:30

Ya que

$$\frac{\arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^\infty\frac{(2x)^{2n-1}}{n{2n\choose n}}$$

podemos escribir

$$\sum_{n=1}^\infty\frac{4^nx^{n}}{n{2n\choose n}}=\frac{2\sqrt{x}\arcsin \sqrt{x}}{\sqrt{1-x}}$$

Multiplica ambos lados por $-\frac{\ln x}{x}$ luego $\int_0^y$ y usa el hecho de que $\int_0^y - x^{n-1}\ln xdx=\frac{1}{n^2}y^n-\frac{\ln y}{n}y^n$

$$\sum_{n=1}^\infty\frac{4^ny^n}{n^3{2n\choose n}}-\ln y\sum_{n=1}^\infty\frac{4^ny^n}{n^2{2n\choose n}}=-\int_0^y \frac{2\ln x\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}dx$$

Luego multiplique ambos lados por $\frac{1}{y\sqrt{1-y}}$ luego $\int_0^1$ obtenemos

$$\sum_{n=1}^\infty\frac{4^n}{n^3{2n\choose n}}\left(\int_0^1\frac{y^{n-1}}{\sqrt{1-y}}dy\right)-\int_0^y\frac{\ln y}{y\sqrt{1-y}}\left(\sum_{n=1}^\infty\frac{(2\sqrt{y})^{2n}}{n^2{2n\choose n}}\right)dx$$ $$=-\int_0^1\int_0^y \frac{2\ln x\arcsin \sqrt{x}}{y\sqrt{x}\sqrt{1-x}\sqrt{1-y}}dxdy=-\int_0^1 \frac{2\ln x\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(\int_x^1\frac{dy}{y\sqrt{1-y}}\right)dx$$

$$=-\int_0^1 \frac{2\ln x\arcsin \sqrt{x}}{\sqrt{x}\sqrt{1-x}}\left(2\ln(1+\sqrt{1-x})-\ln x\right)dx$$

$$\overset{\sqrt{x}=\sin\theta}{=}16\int_0^{\pi/2}x\ln(\sin x)\ln\left(\frac{\sin x}{1+\cos x}\right)dx$$

$$=16\int_0^{\pi/2}x\ln(\sin x)\ln\left(\tan(\frac x2)\right)dx$$

$$\overset{x\to 2x}{=}64\int_0^{\pi/4}x\ln(\sin(2x))\ln\left(\tan x\right)dx$$

$$=64\int_0^{\pi/4}x[\ln(2)+\ln(\sin x)+\ln(\cos x)][\ln(\sin x)-\ln(\cos x)]dx$$

$$=64\ln(2)\int_0^{\pi/4}x\ln(\tan x)dx+64\int_0^{\pi/4}x\ln^2(\sin x)dx-64\int_0^{\pi/4}x\ln^2(\cos x)dx$$

Para el LHS, utilice $\int_0^1\frac{y^{n-1}}{\sqrt{1-y}}dy=\frac{4^n}{n{2n\choose n}}$ y $\sum_{n=1}^\infty\frac{(2\sqrt{y})^{2n}}{n^2{2n\choose n}}=2\arcsin^2(\sqrt{y})$ obtenemos

$$\text{LHS}=\sum_{n=1}^\infty\frac{16^n}{n^4{2n\choose n}^2}-2\int_0^1\frac{\ln y\arcsin^2(\sqrt{y})}{y\sqrt{1-y}}dy$$ $$\overset{\sqrt{y}=\sin \theta}{=}\sum_{n=1}^\infty\frac{16^n}{n^4{2n\choose n}^2}-8\int_0^{\pi/2} x^2\csc x\ln(\sin x)dx$$

Por lo tanto

$$\sum_{n=1}^\infty\frac{16^n}{n^4{2n\choose n}^2}=64\ln(2)\int_0^{\pi/4}x\ln(\tan x)dx-64\int_0^{\pi/4}x\ln^2(\cos x)dx$$ $$+64\int_0^{\pi/4}x\ln^2(\sin x)dx+8\int_0^{\pi/2} x^2\csc x\ln(\sin x)dx\tag1$$


La primera integral se puede realizar mediante la serie de Fourier:

$$\int_0^{\pi/4} x\ln(\tan x)dx=\frac{7}{16}\zeta(3)-\frac{\pi}{4}\text{G}\tag2$$

La segunda integral:

$$\int_0^{\pi/4}x\ln^2(\cos x)dx=\int_0^{\pi/2}x\ln^2(\cos x)dx-\underbrace{\int_{\pi/4}^{\pi/2}x\ln^2(\cos x)dx}_{x\to \pi/2-x}$$

$$=\int_0^{\pi/2}x\ln^2(\cos x)dx-\int_{\pi/4}^{\pi/2}(\frac{\pi}{2}-x)\ln^2(\sin x)dx$$

$$=\int_0^{\pi/2}x\ln^2(\cos x)dx-\frac{\pi}{2}\int_0^{\pi/4}\ln^2(\sin x)dx+\int_0^{\pi/4}x\ln^2(\sin x)dx$$

Conectando este resultado junto con $(2)$ en $(1)$, la integral $\int_0^{\pi/4}x\ln^2(\sin x)dx$ muy bien cancela la obtención de:

$$\sum_{n=1}^\infty\frac{16^n}{n^4{2n\choose n}^2}=28\ln(2)\zeta(3)-16\pi\ln(2)\text{G}-64\int_0^{\pi/2}x\ln^2(\cos x)dx$$ $$+32\pi\int_0^{\pi/4}\ln^2(\sin x)dx+8\int_0^{\pi/2} x^2\csc x\ln(\sin x)dx$$

Manipulemos la primera integral usando el mismo truco $x\to \pi/2-x$:

$$\int_0^{\pi/2}x\ln^2(\cos x)dx=\int_0^{\pi/2}(\frac{\pi}{2}-x)\ln^2(\sin x)dx$$

$$=\frac{\pi}{2}\int_0^{\pi/2}\ln^2(\cos x)dx-\int_0^{\pi/2}x\ln^2(\sin x)dx$$

Por función Beta tenemos

$$\frac{\pi}{2}\int_0^{\pi/2}\ln^2(\cos x)dx=\frac{15}{8}\zeta(4)+\frac32\ln^2(2)\zeta(2)$$

y nuestra suma se reduce a

$$\sum_{n=1}^\infty\frac{16^n}{n^4{2n\choose n}^2}=28\ln(2)\zeta(3)-16\pi\ln(2)\text{G}-120\zeta(4)-96\ln^2(2)\zeta(2)$$ $$+64\underbrace{\int_0^{\pi/2}x\ln^2(\sin x)dx}_{\mathcal{\Large{I_1}}}+32\pi\underbrace{\int_0^{\pi/4}\ln^2(\sin x)dx}_{\mathcal{\Large{I_2}}}+8\underbrace{\int_0^{\pi/2}x\csc x\ln(\sin x)dx}_{\mathcal{\Large{I_3}}}$$

$\mathcal{I}_1$se calcula aquí :

$$\int_0^{\pi/2} x\ln^2(\sin x)\textrm{d}x=\frac{1}{2}\ln^2(2)\zeta(2)-\frac{19}{32}\zeta(4)+\frac{1}{24}\ln^4(2)+\operatorname{Li}_4\left(\frac{1}{2}\right)$$

$\mathcal{I}_2$se calcula aquí

$$\int_{0}^{\pi /4} \ln^{2}(\sin x) \ dx = \frac{\pi^{3}}{192} + G\frac{ \ln(2)}{2} + \frac{3 \pi}{16} \ln^{2}(2) + \text{Im} \ \text{Li}_{3}(1+i).$$

$\mathcal{I}_3$se calcula aquí

$$\int_0^{\pi/2} \frac{x^2 \ln(\sin x)}{\sin (x)} dx=-4 \pi \Im\left\{\text{Li}_3\left(\frac{1+i}{2}\right)\right\}-\frac{7}{2} \zeta (3) \ln (2)+\frac{135}{16}\zeta(4)+\frac{3}{4} \zeta(2) \ln ^2(2)$$ $$=4\pi\Im\{\text{Li}_3(1+i)\}-\frac{45}{4}\zeta(4)-\frac72\ln(2)\zeta(3)-\frac32\ln^2(2)\zeta(2)$$

El último resultado se deriva de usar

$$\Im\left\{\text{Li}_3\left(\frac{1+i}{2}\right)\right\}=\frac{7\pi^3}{128}+\frac{3\pi}{32}\ln^2(2)-\Im\{\text{Li}_3(1+i)\}$$

Recogiendo las tres integrales finalmente obtenemos

$$\sum _{n=1}^{\infty } \frac{16^n}{n^4 \binom{2 n}{n}^2}=64 \pi \Im\{\text{Li}_3(1+i)\}+64 \text{Li}_4\left(\frac{1}{2}\right)-233 \zeta(4)-40 \ln ^2(2)\zeta(2)+\frac{8}{3}\ln ^4(2)$$


Gracias a Cornel por la pista$x\to \pi/2-x$ que simplifica $\int_0^{\pi/2}x\ln^2(\cos x)dx$ a integrales conocidas.