Cómo cambiar el espacio horizontal mientras se alinea el entorno

Aug 15 2020

Este es mi código, si uno lo prueba, el último término está completamente a la derecha, ¿cómo puedo cambiar el espaciado horizontal para que todo esté a la izquierda?

\documentclass[a4paper]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{mathrsfs}
\usepackage{amsfonts}
\usepackage{tabstackengine}
\stackMath
\makeatletter
\renewcommand\TAB@delim[1]{\scriptstyle#1}
\makeatother
\setstackgap{S}{2pt}
\begin{document}
\begin{align*} &\int _0^1\arctan ^3\left(x\right)\:dx=\frac{1}{2}\beta \left(3\right)-2\int _0^1\frac{x\arctan ^2\left(x\right)}{1+x^2}\:dx\\[5mm] &=\frac{1}{2}\beta \left(3\right)-\frac{3}{8}\ln \left(2\right)\zeta \left(2\right)+2\underbrace{\int _0^1\frac{\arctan \left(x\right)\ln \left(1+x^2\right)}{1+x^2}\:dx}_{x=\tan \left(t\right)}\\ &=\frac{1}{2}\beta \left(3\right)-\frac{3}{8}\ln \left(2\right)\zeta \left(2\right)-4\int _0^{\frac{\pi }{4}}t\ln \left(\cos \left(t\right)\right)\:dt \\[2mm] &=\frac{1}{2}\beta \left(3\right)-\frac{3}{8}\ln \left(2\right)\zeta \left(2\right)+4\ln \left(2\right)\int _0^{\frac{\pi }{4}}t-4\sum _{k=1}^{\infty }\frac{\left(-1\right)^{k+1}}{k}\int _0^{\frac{\pi \:}{4}}t\cos \left(2kx\right)\:dt \end{align*}
%\end{Large}
\end{document}

Respuestas

1 Mico Aug 15 2020 at 16:25

Si proporciona un salto de línea adicional en lo que actualmente es la última fila (y omite la \end{Large}directiva parásita ), su ecuación se ve bien en mi opinión.

Por cierto, ninguna de las declaraciones múltiples \lefty de \righttamaño realmente hace nada, excepto estropear el espaciado horizontal y crear una gran cantidad de desorden de código. Omitirlos.

\documentclass[a4paper]{article}
\usepackage{amsmath}
\begin{document}

\begin{align*} \int_0^1 \!\arctan^3(x)\,dx &=\frac{1}{2}\beta(3) -2\int_0^1 \frac{x\arctan^2(x)}{1+x^2}\,dx\\[3mm] &=\frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) +2\underbrace{\int_0^1 \frac{\arctan(x)\ln(1+x^2)}{% 1+x^2}\,dx}_{x=\tan(t)}\\ &=\frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) -4\int_0^{\frac{\pi}{4}} t\ln(\cos(t))\,dt\\[2mm] &=\frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) +4\ln(2)\int_0^{\frac{\pi}{4}} t \\ % <-- new linebreak &\quad -4\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \int_0^{\frac{\pi}{4}} t\cos(2kx)\,dt \end{align*}
\end{document}
1 Zarko Aug 15 2020 at 16:36

Con el uso del multlinedentorno definido en el mathtoolspaquete:

\documentclass[a4paper]{article}
\usepackage{mathtools}

\begin{document}
    \begin{align*} \int_0^1 \arctan^3(x)\,dx &=\frac{1}{2}\beta(3) -2\int_0^1 \frac{x\arctan^2(x)}{1+x^2}\,dx\\[3mm] &=\frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) +2\underbrace{\int_0^1 \frac{\arctan(x)\ln(1+x^2)}{% 1+x^2}\,dx}_{x=\tan(t)}\\ &=\frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) -4\int_0^{\frac{\pi}{4}} t\ln(\cos(t))\,dt\\[2mm] & = \begin{multlined}[t] \frac{1}{2}\beta(3)-\frac{3}{8}\ln(2)\zeta(2) +4\ln(2)\int_0^{\frac{\pi}{4}} t \\ % <-- new linebreak -4\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \int_0^{\frac{\pi}{4}} t\cos(2kx)\,dt \end{multlined} \end{align*}
\end{document}

Bernard Aug 15 2020 at 21:21

Otra variante más, con algunas mejoras: eliminé la plétora de inútiles \left ... \right, usando una sola \bigl(...\bigr)por razones de legibilidad. Aparte de eso, usé sistemáticamente las fracciones de tamaño mediano de nccmathpara coeficientes fraccionarios, que no deberían tener, en mi opinión, la misma importancia visual que las expresiones fraccionarias.

\documentclass{article}%
\usepackage{nccmath, mathtools}

\begin{document}

\begin{align*} \int _0^1\arctan ^3(x)\:dx&=\mfrac{1}{2}\beta (3)-2\int _0^1\frac{x\arctan ^2(x)}{1+x^2}\:dx\\[5mm] &=\mfrac{1}{2}\beta (3)-\mfrac{3}{8}\ln (2)\zeta (2)+2\underbrace{\int _0^1\frac{\arctan (x)\ln (1+x^2)}{1+x^2}\:dx}_{x=\tan (t)}\\ &=\mfrac{1}{2}\beta (3)-\mfrac{3}{8}\ln (2)\zeta (2)-4\int _0^{\frac{\pi }{4}}t\ln\bigl(\cos(t)\bigr)\:dt \\[2mm] &=\mfrac{1}{2}\beta (3)\begin{aligned}[t] & -\mfrac{3}{8}\ln (2)\zeta (2)+4\ln (2)\int _0^{\frac{\pi }{4}}t {}\\[-1ex] & -4\sum _{k=1}^{\infty }\frac{(-1)^{k+1}}{k}\int _0^{\frac{\pi \:}{4}}t\cos (2kx)\:dt \end{aligned} \end{align*}

\end{document}