Cómo leer un objeto BeautifulSoup Div Tag como un diccionario

Aug 18 2020

Nuevo en HTML y BeautifulSoup aquí, así que disculpas. . . Leí un sitio web de Bienes Raíces con BS4 y logré obtener la información que quiero en una Clase Div en particular

list_1_divs = soup.find_all('div', class_="ListingCell-AllInfo ListingUnit")

BS4 encuentra 29 Divs principales, cada uno con muchos Divs secundarios, pero toda la información que quiero parece estar en el principal, por lo que eliminé todos sus Divs secundarios. El Div principal resultante en la variable " s_row " parece una cadena cuando lo imprimo, pero el modo de depuración describe " s_row " como {Etiqueta: 3} que contiene attrs = {dict: 13} y luego enumera los elementos que quiero en un buen lista estructurada en la ventana de depuración.

¿Cómo imprimo (o paso a Pandas) el Diccionario subyacente dentro del objeto {Etiqueta}? Mi objetivo final es tener una tabla de los 13 elementos del diccionario como columnas, con 29 filas que contengan los valores de cada " s_row ". Gracias por adelantado.

Código:

import urllib.request
from bs4 import BeautifulSoup
wiki = "https://www.lamudi.com.ph/metro-manila/makati/rockwell-1/buy/"
page = urllib.request.urlopen(wiki)
soup = BeautifulSoup(page, features='html.parser')
list_divs = soup.find_all('div', class_="ListingCell-AllInfo ListingUnit")
for s_row in list_divs:
    for child in s_row.find_all("div"):
        child.decompose()
    print(s_row)

Respuestas

1 AndrejKesely Aug 18 2020 at 20:03

Si lo entendí bien, desea extraer cada atributo como columna en el marco de datos:

import pandas as pd
import urllib.request
from bs4 import BeautifulSoup


wiki = "https://www.lamudi.com.ph/metro-manila/makati/rockwell-1/buy/"
page = urllib.request.urlopen(wiki)
soup = BeautifulSoup(page, features='html.parser')
list_divs = soup.find_all('div', class_="ListingCell-AllInfo ListingUnit")
all_data = []
for s_row in list_divs:
    all_data.append({})
    for a in s_row.attrs:
        if a == 'class':
            continue
        all_data[-1][a] = s_row[a]

df = pd.DataFrame(all_data)
print(df)

Huellas dactilares:

   data-price data-category                data-subcategories data-car_spaces data-bedrooms  ... data-price_range data-sqm_range data-rooms_total data-land_size data-subdivisionname
0    82000000   condominium       ["condominium","3-bedroom"]               2             3  ...              NaN            NaN              NaN            NaN                  NaN
1     9800000   condominium          ["condominium","studio"]             NaN             1  ...              NaN            NaN              NaN            NaN                  NaN
2    48990000   condominium  ["condominium","double-bedroom"]             NaN             2  ...      37.8M-48.9M     93-121 sqm              NaN            NaN                  NaN
3    73730000   condominium       ["condominium","3-bedroom"]             NaN             3  ...      45.3M-73.7M    126-202 sqm              NaN            NaN                  NaN
4    26600000   condominium  ["condominium","single-bedroom"]             NaN             1  ...            26.6M         62 sqm              NaN            NaN                  NaN
5    27500000   condominium  ["condominium","double-bedroom"]               1             2  ...              NaN            NaN              NaN            NaN                  NaN
6   130000000   condominium     ["condominium","penthouse-1"]             NaN             4  ...              NaN            NaN              NaN            NaN                  NaN
7    78000000   condominium       ["condominium","3-bedroom"]               2             3  ...              NaN            NaN              NaN            NaN                  NaN
8    55000000   condominium       ["condominium","3-bedroom"]               2             3  ...              NaN            165                3            NaN                  NaN
9    19000000   condominium  ["condominium","single-bedroom"]               1             1  ...              NaN             64                1            NaN                  NaN
10   30000000   condominium  ["condominium","double-bedroom"]             NaN             2  ...              NaN            NaN              NaN            NaN                  NaN
11   14000000   condominium  ["condominium","single-bedroom"]             NaN             1  ...              NaN            NaN              NaN            NaN                  NaN
12   50000000   condominium       ["condominium","3-bedroom"]             NaN             3  ...              NaN            NaN              NaN            NaN                  NaN
13   48000000   condominium       ["condominium","3-bedroom"]             NaN             3  ...              NaN            NaN              NaN            NaN                  NaN
14   27000000   condominium  ["condominium","double-bedroom"]             NaN             2  ...              NaN            NaN              NaN            NaN                  NaN
15   36000000   condominium       ["condominium","3-bedroom"]             NaN             3  ...              NaN            NaN              NaN            NaN                  NaN
16   52000000         house   ["house","single-family-house"]               4             3  ...              NaN            NaN              NaN            110         Palm Village
17   48000000   condominium       ["condominium","3-bedroom"]               2             3  ...              NaN            NaN                4            NaN                  NaN
18   37500000   condominium  ["condominium","double-bedroom"]               2             2  ...              NaN            NaN              NaN            NaN                  NaN
19   19000000   condominium  ["condominium","double-bedroom"]               1             2  ...              NaN            NaN              NaN            NaN                  NaN
20   66700000   condominium       ["condominium","3-bedroom"]               2             3  ...              NaN            NaN              NaN            NaN                  NaN
21   16500000   condominium  ["condominium","double-bedroom"]               1             2  ...              NaN            NaN              NaN            NaN                  NaN
22   12900000   condominium  ["condominium","single-bedroom"]               1             1  ...              NaN            NaN              NaN            NaN                  NaN
23   20000000   condominium  ["condominium","double-bedroom"]               1             2  ...              NaN            NaN              NaN            NaN                  NaN
24   17300000   condominium  ["condominium","single-bedroom"]             NaN             1  ...              NaN            NaN              NaN            NaN                  NaN
25   25000000   condominium  ["condominium","double-bedroom"]             NaN             2  ...              NaN            NaN              NaN            NaN                  NaN
26   14000000   condominium  ["condominium","single-bedroom"]             NaN             1  ...              NaN            NaN              NaN            NaN                  NaN
27   32000000   condominium  ["condominium","double-bedroom"]             NaN             2  ...              NaN            NaN              NaN            NaN                  NaN
28   38000000   condominium  ["condominium","double-bedroom"]               1             2  ...              NaN            NaN              NaN            NaN                  NaN

[29 rows x 17 columns]