¿Cuándo es continua la periodización de una función?

Aug 17 2020

Considere una función $f\in\mathcal{C}_0(\mathbb{R})$, dónde $\mathcal{C}_0(\mathbb{R})$denota el espacio de funciones continuas acotadas que desaparecen en el infinito . Estoy interesado en el$T$-periodización de dicha función, definida como:$$f_{T}(t)=\sum_{n\in\mathbb{Z}} f(t-nT),\quad \forall t\in \mathbb{R}.$$Como se explica en Fischer - Sobre la dualidad de funciones discretas y periódicas ,$f_{T}$ es un $T$-distribución templada periódica si$f$es una función que decae rápidamente, es decir, que desaparece en el infinito más rápido que cualquier polinomio.

Mi pregunta se refiere a la regularidad de $f_T$:

Para que funciones $f\in\mathcal{C}_0(\mathbb{R})$ es la función generalizada periodizada $f_{T}$definido anteriormente una función continua ordinaria ?

En otras palabras, ¿cuáles deberían ser las suposiciones sobre $f$ para que su periodización sea continua?

Cualquier pista será muy apreciada. ¡Muchas gracias por adelantado!

Respuestas

2 JochenWengenroth Aug 17 2020 at 16:31

Solo necesitas eso $f$disminuye lo suficientemente rápido para hacer que la serie converja uniformemente en conjuntos compactos. Por ejemplo, sería suficiente que$|x|^p |f(x)|$ está limitado para algunos $p>1$. Entonces puede estimar los términos de la serie de manera uniforme en un intervalo compacto$[-a,a]$ para $nT>2a$ por $cn^{-p}$ con una constante $c$.

1 JensVF Aug 18 2020 at 03:18

Respuesta corta : por ejemplo, para funciones de Schwartz .

Respuesta larga : la transformada de Fourier de "periódica" es "discreta" y la transformada de Fourier de "discreta" es "periódica". Este es un mapeo uno a uno. Se explica en este Fischer - Sobre la dualidad de funciones discretas y periódicas .

De manera análoga, la transformada de Fourier de "regular" es "local" y la transformada de Fourier de "local" es "regular". Es otro mapeo uno a uno. Se explica en Fischer - Sobre la dualidad de funciones regulares y locales .

El término "regular" se refiere a funciones ordinarias infinitamente diferenciables que no crecen más rápido que los polinomios. Estas funciones (regulares) son los denominados operadores de multiplicación para distribuciones templadas. Su producto de multiplicación con cualquier distribución templada es nuevamente una distribución templada.

El término "local" se refiere a distribuciones templadas que son "locales", es decir, decaen rápidamente a cero (más rápido que los polinomios). Estas funciones (generalizadas) son los denominados operadores de convolución para distribuciones templadas. Su producto de convolución con cualquier distribución templada es nuevamente una distribución templada.

Las propiedades de "regular" y "local" cumplen un teorema de convolución en distribuciones templadas .

Ahora, las propiedades de "periódico", "discreto", "regular" y "local" se pueden combinar. Por ejemplo, "local + regular" son funciones de Schwartz y la transformada de Fourier de las funciones de Schwartz son, nuevamente, funciones de Schwartz ("local + regular"). Además, la transformada de Fourier de "periódico discreto" es nuevamente "periódico discreto". Se produce la Transformada Discreta de Fourier (DFT) .

Ahora bien, la condición previa para las funciones generalizadas que se pueden periodizar es que sean "locales" y la condición previa para las funciones generalizadas que se pueden discretizar es que sean "regulares".

Entonces, volviendo a la pregunta original , para periodizar una función (ordinaria o generalizada), debe ser "local" y para permitir que sea una función ordinaria debe ser "regular". En otras palabras, las funciones de Schwartz cumplen estos dos requisitos , son "regulares + locales".

Esta propiedad de las funciones de Schwartz de ser "regulares" y "locales" simultáneamente, explica su papel especial como funciones de prueba en la teoría de la distribución y en la física cuántica .

Sin embargo, hay una diferencia de "ser suave" en el sentido de funciones ordinarias y generalizadas. Cabe recordar que toda función generalizada es suave (infinitamente diferenciable) y, por tanto, "continua". Para responder a esta pregunta en el sentido de funciones ordinarias, incrustado en la teoría de funciones generalizadas, hay más funciones además de las funciones de Schwartz. La función rectangular , por ejemplo, es suave en el sentido de funciones generalizadas pero no suave en el sentido de funciones ordinarias. Su periodización, sin embargo, produce la función que es constantemente 1 para T adecuado, que es una función ordinaria suave (en particular, continua). Entonces, obviamente, las funciones que son continuas en un intervalo [-T / 2, + T / 2] y tales que f (-T / 2) = f (+ T / 2) también cumplen el requisito.