Un problema de geometría difícil que involucra divisiones armónicas
Deje triangulo agudo $ABC$. Dejar$A_1$ y $A_2$ las intersecciones del círculo de diámetro $(BC)$ y la altitud de $A$ a $BC$ ($A_1$ está más cerca de $A$ que $A_2$). Definir puntos de manera similar$B_1$, $B_2$, $C_1$, $C_2$. Dejar$A'$ la intersección de $B_1C_2$ y $B_2C_1$. Definir puntos de manera similar$B'$ y $C'$. Pruebalo$AA'$, $BB'$ y $CC'$ concurrir.

Mi idea: tal vez ayude ver eso $(A,H;A_1,A_2)$ (dónde $H$ es el ortocentro del triángulo $ABC$) es una división armónica. también$H$ es el centro radical de los 3 círculos dibujados, entonces $B_1C_1B_2C_2$es cíclico (por potencia de un punto). Es obvio por la figura que$A'$ debe acostarse sobre $BC$. Pero no sé cómo demostrarlo. ¿Podrías ayudarme? ¡Gracias por adelantado!
Si ayuda, el problema proviene de un libro rumano sobre divisiones armónicas, pero se omite la solución.
Respuestas
Resolvemos el problema usando coordenadas trilineales. La altitud$AD$ es el conjunto de puntos cuyas coordenadas $x:y:z$ satisfacer $$y\cos B=z\cos C$$ El circulo con diametro $BC$ se define análogamente, los puntos que satisfacen $$yz=x(x\cos A-y\cos B-z\cos C)$$ (Ver https://babel.hathitrust.org/cgi/pt?id=coo.31924059323034&view=1up&seq=344 para la referencia.) Configuración arbitraria $x=1$ (dado que las coordenadas trilineales son proporciones) y luego resolviendo para $y,z$ nos da las coordenadas de $A_1$ y $A_2$: $$A_{1,2}=1: -\cos C\pm\sqrt{\frac{\cos C}{\cos B}(\cos A+\cos B\cos C)}: -\cos B\pm\sqrt{\frac{\cos B}{\cos C}(\cos A+\cos B\cos C)}$$ El signo más da $A_1$ y el signo menos da $A_2$; $B_1,B_2,C_1,C_2$ se puede obtener permutando cíclicamente $A,B,C$ en la ecuación anterior.
Ahora asocia el vector $(u,v,w)^T$con el punto en las coordenadas$u:v:w$y la linea $ux+vy+wz=0$. Es bien sabido que la recta que pasa por puntos$P_1$ y $P_2$ es $(\mathbf P_1×\mathbf P_2)\cdot(x,y,z)^T=0$ y que la intersección de líneas $l_1$ y $l_2$ es $\mathbf l_1×\mathbf l_2$. Basado en esto, la intersección de las líneas$B_1C_2$ y $C_1B_2$ es $$A'=(\mathbf B_1×\mathbf C_2)×(\mathbf C_1×\mathbf B_2)$$ $$=0:(\cos A\cos C+\cos B)\sqrt{\cos C(\cos A\cos B+\cos C)}:(\cos A\cos B+\cos C)\sqrt{\cos B(\cos A\cos C+\cos B)}$$ Así $A'$ Miente en $BC$como sospechabas. La línea$AA'$ entonces tiene vector normal $\mathbf l_A=\mathbf A'×(1,0,0)^T$, y de manera similar para $\mathbf l_B=BB'$ y $\mathbf l_C=CC'$ permutando cíclicamente $A,B,C$; el determinante de la matriz formada por estos tres vectores es $$\begin{vmatrix}\mathbf l_A&\mathbf l_B&\mathbf l_C\end{vmatrix}=0$$ De ahí las líneas $AA',BB',CC'$ concurren, como era necesario mostrar, en el punto con coordenadas trilineales $$X=\sqrt{1+\frac{\cos B\cos C}{\cos A}}:\sqrt{1+\frac{\cos C\cos A}{\cos B}}:\sqrt{1+\frac{\cos A\cos B}{\cos C}}$$ $$=\frac1{a\sqrt{b^2+c^2-a^2}}:\frac1{b\sqrt{c^2+a^2-b^2}}:\frac1{c\sqrt{a^2+b^2-c^2}}$$ $$=\frac1{\sqrt{a\cos A}}:\frac1{\sqrt{b\cos B}}:\frac1{\sqrt{c\cos C}}$$
Aquí está el código SymPy que utilicé para derivar todas las expresiones anteriores:
#!/usr/bin/env python3
from sympy import *
cA, cB, cC = symbols('cA cB cC', positive=True) # cos A, cos B, cos C
x, y, z = symbols('x y z', real=True)
def cycB(p): # ABC -> BCA
q = p.subs({cA: cB, cB: cC, cC: cA}, simultaneous=True)
return Matrix([q[2], q[0], q[1]])
def cycC(p): # ABC -> CAB
q = p.subs({cA: cC, cB: cA, cC: cB}, simultaneous=True)
return Matrix([q[1], q[2], q[0]])
f1 = y*cB - z*cC
f2 = cA - y*cB - z*cC - y*z
sols = solve([f1, f2], [y, z])
A1 = Matrix([1, sols[1][0].expand(), sols[1][1].expand()])
A2 = Matrix([1, sols[0][0].expand(), sols[0][1].expand()])
print("A1 =", A1)
print("A2 =", A2)
B1 = cycB(A1)
B2 = cycB(A2)
C1 = cycC(A1)
C2 = cycC(A2)
Ap = simplify( B1.cross(C2).cross(B2.cross(C1)) ) # A'
Ap *= sqrt(cA*cB*cC)/2
print("A' =", Ap)
lA = Ap.cross(Matrix([1, 0, 0]))
lB = cycB(lA)
lC = cycC(lA)
D = Matrix([lA.T, lB.T, lC.T])
pprint(D)
print("det(D) =", D.det()) # 0
X = D.nullspace()[0] * sqrt(cA*cB + cC) / sqrt(cC)
a, b, c = symbols('a b c', positive=True)
X = X.subs(cA, (b**2+c**2-a**2)/(2*b*c))
X = X.subs(cB, (c**2+a**2-b**2)/(2*c*a))
X = X.subs(cC, (a**2+b**2-c**2)/(2*a*b))
Delta = sqrt(-(a - b - c)*(a - b + c)*(a + b - c))*sqrt(a + b + c)/sqrt(2) # area of triangle
X = factor(X, deep=True) / Delta
print("X =", X.simplify())