해결하다 $\lim_{x\rightarrow +\infty}\frac{1}{x}\log\left(\frac{x+1}{1+x^2}\right) = 0$로피탈의 법칙 없이
한도를 어떻게 풀 것인가
$$\lim_{x\rightarrow +\infty}\frac{1}{x}\log\left(\frac{x+1}{1+x^2}\right) = 0$$
로피탈의 법칙을 사용하지 않고?
답변
$$\lim_{x\to \infty }\frac{1}{x}\ln\left(\frac{x+1}{1+x^2}\right)=\lim_{u\to 0}u\ln\left(\frac{u^2+u}{u^2+1}\right).$$
지금,$$\frac{1}{1+u^2}=1+o(1)\implies \frac{u^2+u}{u^2+1}=u+o(u).$$그러므로\begin{align} u\ln\left(\frac{u^2+u}{u^2+1}\right)&=u\ln(u)+u\ln(1+o(u))\\ &=u\ln(u)+uo(1)\\ &=u\ln(u)+o(u)\underset{u\to 0}{\longrightarrow }0. \end{align}
$$\frac{1}{x}\log\left(\frac{x+1}{1+x^2}\right)=\frac{1}{x} \log \frac{1}{x}+\frac{\log \left(1+\frac{1}{x} \right)}{\frac{1}{x}\cdot x^2}-\frac{\log \left(1+\frac{1}{x^2} \right)}{\frac{1}{x^2}\cdot x^3}$$
부터$\log (1+t) \leq t$모든$t \geq 0$우리는 얻는다$\frac 1 x \log (1+x)=\frac 2 x \log \sqrt {1+x} \leq \frac 2 x (\sqrt {1+x}-1) \to 0$. 비슷하게,$\frac 1 x \log (1+x^{2}) \leq \frac 3 x ( ({1+x^{2}})^{1/3}-1) \to 0$. 그래서 이 둘의 차이는$0$
놓다$x=\frac{1}{t}$또는 한계가 된다
$\lim_{t\rightarrow 0}{t\log(1+t)+t\log t-t\log(1+t^2)}$
=$0$
\begin{align} \lim_{x\to+\infty}\frac{1}{x}\log\left(\frac{x+1}{1+x^2}\right) &= \lim_{x\to+\infty}\left(\frac{1}{x}\cdot\frac{1+x^2}{x+1}\right)\left[\frac{x+1}{1+x^2}\log\left(\frac{x+1}{1+x^2}\right)\right]=\\ &= \lim_{x\to+\infty}\frac{1+x^2}{x^2+x}\cdot\lim_{y\to0}y\log y=1\cdot0=0\\ \end{align}