랜덤 효과와 이소 다를 사용한 비선형 회귀

Jan 19 2021

나는 내가 해결할 수없는 문제에 직면 해있다. 고정 계수가있는 2 차 미분 방정식 (감쇠 발진기)의 솔루션을 모델로 사용하여 임의 효과로 비선형 회귀 를 사용 nlme하거나 nlmODE수행하고 싶습니다 .

나는 nlme단순한 모델 로 사용하는데 deSolve, 미분 방정식의 해를 생성하기 위해를 사용 하는 것이 문제를 일으키는 것 같습니다 . 아래의 예와 내가 직면 한 문제.

데이터 및 기능

다음은 다음을 사용하여 미분 방정식의 해를 생성하는 함수입니다 deSolve.

library(deSolve)
ODE2_nls <- function(t, y, parms) {
  S1 <- y[1]
  dS1 <- y[2]
  dS2 <- dS1
  dS1 <- - parms["esp2omega"]*dS1  - parms["omega2"]*S1 + parms["omega2"]*parms["yeq"]
  res <- c(dS2,dS1)
  list(res)}

solution_analy_ODE2 = function(omega2,esp2omega,time,y0,v0,yeq){
  parms  <- c(esp2omega = esp2omega,
              omega2 = omega2,
              yeq = yeq)
  xstart = c(S1 =  y0, dS1 = v0)
  out <-  lsoda(xstart, time, ODE2_nls, parms)
  return(out[,2])
}

주어진 기간과 감쇠 계수에 대한 솔루션을 생성 할 수 있습니다. 예를 들어 여기에는 기간이 20이고 약간 감쇠가 0.2입니다.


# small example:
time <- 1:100
period <- 20 # period of oscillation
amort_factor <- 0.2
omega <- 2*pi/period # agular frequency
oscil <- solution_analy_ODE2(omega^2,amort_factor*2*omega,time,1,0,0)
plot(time,oscil)

이제 무작위 시작 단계 (즉, 다른 시작 위치와 속도)를 가진 10 명의 개인 패널을 생성합니다. 목표는 시작 값에 무작위 효과가있는 비선형 회귀를 수행하는 것입니다.

library(data.table)
# generate panel
Npoint <- 100 # number of time poitns
Nindiv <- 10 # number of individuals
period <- 20 # period of oscillation
amort_factor <- 0.2
omega <- 2*pi/period # agular frequency
# random phase
phase <- sample(seq(0,2*pi,0.01),Nindiv)
# simu data:
data_simu <- data.table(time = rep(1:Npoint,Nindiv), ID = rep(1:Nindiv,each = Npoint))

# signal generation
data_simu[,signal := solution_analy_ODE2(omega2 = omega^2,
                                         esp2omega = 2*0.2*omega,
                                         time = time,
                                         y0 = sin(phase[.GRP]),
                                         v0 = omega*cos(phase[.GRP]),
                                         yeq = 0)+ 
            rnorm(.N,0,0.02),by = ID]

살펴보면 적절한 데이터 세트가 있습니다.

library(ggplot2)
ggplot(data_simu,aes(time,signal,color = ID))+
  geom_line()+
  facet_wrap(~ID)

문제

nlme 사용

nlme더 간단한 예제 (deSolve를 사용하지 않는 비선형 함수)에서 작업하는 유사한 구문을 사용하여 다음 을 시도했습니다.

fit <- nlme(model = signal ~ solution_analy_ODE2(esp2omega,omega2,time,y0,v0,yeq), 
     data = data_simu,
     fixed = esp2omega + omega2 + y0 + v0 + yeq ~ 1,
     random = y0 ~ 1 ,
     groups = ~ ID, 
     start = c(esp2omega = 0.08, 
               omega2 = 0.04,
               yeq = 0,
               y0 = 1,
               v0 = 0))

나는 얻는다 :

checkFunc (Func2, times, y, rho) 오류 : func () (2)에서 반환 된 도함수 수는 초기 조건 벡터의 길이 (2000)와 같아야합니다.

역 추적 :

12. stop(paste("The number of derivatives returned by func() (", length(tmp[[1]]), ") must equal the length of the initial conditions vector (", length(y), ")", sep = ""))
11. checkFunc(Func2, times, y, rho)
10. lsoda(xstart, time, ODE2_nls, parms)
9. solution_analy_ODE2(omega2, esp2omega, time, y0, v0, yeq)
.
.

나는 모양 nlme에 조건을 시작하는 벡터를 통과하려고하는 solution_analy_ODE2, 그리고에 오류가 발생 checkFunc에서 lasoda.

나는 사용해 보았다 nlsList:

test <- nlsList(model = signal ~ solution_analy_ODE2(omega2,esp2omega,time,y0,v0,yeq) | ID, 
        data = data_simu, 
        start = list(esp2omega = 0.08, omega2 = 0.04,yeq = 0,
                     y0 = 1,v0 = 0),
        control = list(maxiter=150, warnOnly=T,minFactor = 1e-10), 
        na.action = na.fail, pool = TRUE)
head(test)
Call:
  Model: signal ~ solution_analy_ODE2(omega2, esp2omega, time, y0, v0, yeq) | ID 
   Data: data_simu 

Coefficients:
   esp2omega     omega2           yeq         y0          v0
1  0.1190764 0.09696076  0.0007577956 -0.1049423  0.30234654
2  0.1238936 0.09827158 -0.0003463023  0.9837386  0.04773775
3  0.1280399 0.09853310 -0.0004908579  0.6051663  0.25216134
4  0.1254053 0.09917855  0.0001922963 -0.5484005 -0.25972829
5  0.1249473 0.09884761  0.0017730823  0.7041049  0.22066652
6  0.1275408 0.09966155 -0.0017522320  0.8349450  0.17596648

비선형 피팅이 개별 신호에서 잘 작동 함을 알 수 있습니다. 이제 임의 효과를 사용하여 데이터 세트의 회귀를 수행하려면 구문은 다음과 같아야합니다.

fit <- nlme(test, 
     random = y0 ~ 1 ,
     groups = ~ ID, 
     start = c(esp2omega = 0.08, 
               omega2 = 0.04,
               yeq = 0,
               y0 = 1,
               v0 = 0))

하지만 똑같은 오류 메시지가 나타납니다.

그런 nlmODE다음 몇 년 전에 물어 본 비슷한 질문 에 대한 Bne Bolker의 의견에 따라를 사용해 보았습니다.

nlmODE 사용

library(nlmeODE)
datas_grouped <- groupedData( signal ~ time | ID, data = data_simu, 
                              labels = list (x = "time", y = "signal"), 
                              units = list(x ="arbitrary", y = "arbitrary"))

modelODE <- list( DiffEq = list(dS2dt = ~ S1,
                                dS1dt = ~ -esp2omega*S1  - omega2*S2 + omega2*yeq),
                  ObsEq = list(yc = ~ S2),
                  States = c("S1","S2"),
                  Parms = c("esp2omega","omega2","yeq","ID"), 
                  Init = c(y0 = 0,v0 = 0))

resnlmeode = nlmeODE(modelODE, datas_grouped) 
assign("resnlmeode", resnlmeode, envir = .GlobalEnv)
#Fitting with nlme the resulting function
model <- nlme(signal ~ resnlmeode(esp2omega,omega2,yeq,time,ID), 
              data = datas_grouped, 
              fixed = esp2omega + omega2 + yeq + y0 + v0  ~ 1, 
              random = y0 + v0 ~1,
              start = c(esp2omega = 0.08, 
                        omega2 = 0.04,
                        yeq = 0,
                        y0 = 0,
                        v0 = 0)) # 

오류가 발생합니다.

resnlmeode (esp2omega, omega2, yeq, time, ID) 오류 : 'yhat'개체를 찾을 수 없습니다.

여기서 나는 오류의 원인이나 해결 방법을 이해하지 못합니다.

질문

  • 문제를 재현 할 수 있습니까?
  • 누구든지 nlme또는 사용 하여이 문제를 해결할 아이디어가 nlmODE있습니까?
  • 그렇지 않은 경우 다른 패키지를 사용하는 솔루션이 있습니까? 나는 보았다 nlmixr(https://cran.r-project.org/web/packages/nlmixr/index.html)하지만 모르겠습니다. 설치가 복잡하고 최근 CRAN에서 제거되었습니다.

편집

@tpetzoldt는 nlme동작 을 디버그하는 좋은 방법을 제안했고 저를 많이 놀라게했습니다. 다음은 비선형 함수를 사용한 작업 예입니다. 여기서 개인간에 다양한 매개 변수가있는 5 명의 개인 세트를 생성합니다.

reg_fun = function(time,b,A,y0){
  cat("time : ",length(time)," b :",length(b)," A : ",length(A)," y0: ",length(y0),"\n")
  out <- A*exp(-b*time)+(y0-1)
  cat("out : ",length(out),"\n")
  tmp <- cbind(b,A,y0,time,out)
  cat(apply(tmp,1,function(x) paste(paste(x,collapse = " "),"\n")),"\n")
  return(out)
}

time <- 0:10*10
ramdom_y0 <- sample(seq(0,1,0.01),10)
Nid <- 5
data_simu <- 
data.table(time = rep(time,Nid),
           ID = rep(LETTERS[1:Nid],each = length(time)) )[,signal := reg_fun(time,0.02,2,ramdom_y0[.GRP]) + rnorm(.N,0,0.1),by = ID]

함수의 고양이는 다음을 제공합니다.

time :  11  b : 1  A :  1  y0:  1 
out :  11 
0.02 2 0.64 0 1.64 
 0.02 2 0.64 10 1.27746150615596 
 0.02 2 0.64 20 0.980640092071279 
 0.02 2 0.64 30 0.737623272188053 
 0.02 2 0.64 40 0.538657928234443 
 0.02 2 0.64 50 0.375758882342885 
 0.02 2 0.64 60 0.242388423824404 
 0.02 2 0.64 70 0.133193927883213 
 0.02 2 0.64 80 0.0437930359893108 
 0.02 2 0.64 90 -0.0294022235568269 
 0.02 2 0.64 100 -0.0893294335267746
.
.
.

이제 나는 nlme:

nlme(model = signal ~ reg_fun(time,b,A,y0), 
     data = data_simu,
     fixed = b + A + y0 ~ 1,
     random = y0 ~ 1 ,
     groups = ~ ID, 
     start = c(b = 0.03, A = 1,y0 = 0))

나는 얻다:

time :  55  b : 55  A :  55  y0:  55 
out :  55 
0.03 1 0 0 0 
 0.03 1 0 10 -0.259181779318282 
 0.03 1 0 20 -0.451188363905974 
 0.03 1 0 30 -0.593430340259401 
 0.03 1 0 40 -0.698805788087798 
 0.03 1 0 50 -0.77686983985157 
 0.03 1 0 60 -0.834701111778413 
 0.03 1 0 70 -0.877543571747018 
 0.03 1 0 80 -0.909282046710588 
 0.03 1 0 90 -0.93279448726025 
 0.03 1 0 100 -0.950212931632136 
 0.03 1 0 0 0 
 0.03 1 0 10 -0.259181779318282 
 0.03 1 0 20 -0.451188363905974 
 0.03 1 0 30 -0.593430340259401 
 0.03 1 0 40 -0.698805788087798 
 0.03 1 0 50 -0.77686983985157 
 0.03 1 0 60 -0.834701111778413 
 0.03 1 0 70 -0.877543571747018 
 0.03 1 0 80 -0.909282046710588 
 0.03 1 0 90 -0.93279448726025 
 0.03 1 0 100 -0.950212931632136 
 0.03 1 0 0 0 
 0.03 1 0 10 -0.259181779318282 
 0.03 1 0 20 -0.451188363905974 
 0.03 1 0 30 -0.593430340259401 
 0.03 1 0 40 -0.698805788087798 
 0.03 1 0 50 -0.77686983985157 
 0.03 1 0 60 -0.834701111778413 
 0.03 1 0 70 -0.877543571747018 
 0.03 1 0 80 -0.909282046710588 
 0.03 1 0 90 -0.93279448726025 
 0.03 1 0 100 -0.950212931632136 
 0.03 1 0 0 0 
 0.03 1 0 10 -0.259181779318282 
 0.03 1 0 20 -0.451188363905974 
 0.03 1 0 30 -0.593430340259401 
 0.03 1 0 40 -0.698805788087798 
 0.03 1 0 50 -0.77686983985157 
 0.03 1 0 60 -0.834701111778413 
 0.03 1 0 70 -0.877543571747018 
 0.03 1 0 80 -0.909282046710588 
 0.03 1 0 90 -0.93279448726025 
 0.03 1 0 100 -0.950212931632136 
 0.03 1 0 0 0 
 0.03 1 0 10 -0.259181779318282 
 0.03 1 0 20 -0.451188363905974 
 0.03 1 0 30 -0.593430340259401 
 0.03 1 0 40 -0.698805788087798 
 0.03 1 0 50 -0.77686983985157 
 0.03 1 0 60 -0.834701111778413 
 0.03 1 0 70 -0.877543571747018 
 0.03 1 0 80 -0.909282046710588 
 0.03 1 0 90 -0.93279448726025 
 0.03 1 0 100 -0.950212931632136 
 
time :  55  b : 55  A :  55  y0:  55 
out :  55 
0.03 1 0 0 0 
 0.03 1 0 10 -0.259181779318282 
 0.03 1 0 20 -0.451188363905974 
 0.03 1 0 30 -0.593430340259401 
 0.03 1 0 40 -0.698805788087798 
 0.03 1 0 50 -0.77686983985157 
 0.03 1 0 60 -0.834701111778413 
 0.03 1 0 70 -0.877543571747018 
 0.03 1 0 80 -0.909282046710588 
 0.03 1 0 90 -0.93279448726025 
 0.03 1 0 100 -0.950212931632136 
 0.03 1 0 0 0 
 0.03 1 0 10 -0.259181779318282 
 0.03 1 0 20 -0.451188363905974 
 0.03 1 0 30 -0.593430340259401 
 0.03 1 0 40 -0.698805788087798 
 0.03 1 0 50 -0.77686983985157 
 0.03 1 0 60 -0.834701111778413 
 0.03 1 0 70 -0.877543571747018 
 0.03 1 0 80 -0.909282046710588 
 0.03 1 0 90 -0.93279448726025 
 0.03 1 0 100 -0.950212931632136 
 0.03 1 0 0 0 
 0.03 1 0 10 -0.259181779318282 
 0.03 1 0 20 -0.451188363905974 
 0.03 1 0 30 -0.593430340259401 
 0.03 1 0 40 -0.698805788087798 
 0.03 1 0 50 -0.77686983985157 
 0.03 1 0 60 -0.834701111778413 
 0.03 1 0 70 -0.877543571747018 
 0.03 1 0 80 -0.909282046710588 
 0.03 1 0 90 -0.93279448726025 
 0.03 1 0 100 -0.950212931632136 
...

따라서 nlme시간 벡터를 5 번 (개별 수) 바인딩하고 매개 변수가 동일한 횟수만큼 반복되도록 함수에 전달합니다. 물론 방식 lsoda과 호환되지 않으며 내 기능이 작동합니다.

답변

3 tpetzoldt Jan 21 2021 at 01:21

ode 모델이 잘못된 인수로 호출되어 2 대신 2000 상태 변수가있는 벡터를 가져 오는 것 같습니다. 문제를 보려면 다음을 시도하십시오.

ODE2_nls <- function(t, y, parms) {
  cat(length(y),"\n") # <----
  S1 <- y[1]
  dS1 <- y[2]
  dS2 <- dS1
  dS1 <- - parms["esp2omega"]*dS1  - parms["omega2"]*S1 + parms["omega2"]*parms["yeq"]
  res <- c(dS2,dS1)
  list(res)
}

편집 : 분석 함수가 벡터화 되었기 때문에 작동했다고 생각하므로 ode 모델을 반복하거나 내부적으로 벡터를 상태 변수로 사용하여 ode 함수를 벡터화 할 수 있습니다. ode몇 개의 100k 방정식으로 시스템을 빠르게 푸는 것과 마찬가지로 2000도 가능해야합니다.

나는 상태와 매개 변수가 모두 nlme벡터로 전달 되었다고 생각합니다 . ode 모델의 상태 변수는 "긴"벡터이며 매개 변수는 목록으로 구현 될 수 있습니다.

다음은 예입니다 (편집 됨, 이제 매개 변수를 목록으로 사용) :

ODE2_nls <- function(t, y, parms) {
  #cat(length(y),"\n")
  #cat(length(parms$omega2)) ndx <- seq(1, 2*N-1, 2) S1 <- y[ndx] dS1 <- y[ndx + 1] dS2 <- dS1 dS1 <- - parms$esp2omega * dS1  - parms$omega2 * S1 + parms$omega2 * parms$yeq
  res <- c(dS2, dS1)
  list(res)
}

solution_analy_ODE2 = function(omega2, esp2omega, time, y0, v0, yeq){
  parms  <- list(esp2omega = esp2omega, omega2 = omega2, yeq = yeq)
  xstart = c(S1 =  y0, dS1 = v0)
  out <-  ode(xstart, time, ODE2_nls, parms, atol=1e-4, rtol=1e-4, method="ode45")
  return(out[,2])
}

그런 다음 방정식 수를 설정 (또는 계산)합니다 (예 : N <- 1resp). N <-1000전화하기 전에.

모델은 수치 문제로 실행되기 전에 이러한 방식으로 실행되지만 다른 이야기입니다 ...

그런 다음 비선형 최적화에서 평소와 같이 다른 ode 솔버 (예 :)를 사용 하여 값을 vode설정 atol하고 rtol낮추고 nmle의 최적화 매개 변수를 조정 하고 상자 제약 조건 을 사용하는 등의 작업을 시도 할 수 있습니다 .

1 denis Jan 29 2021 at 20:07

솔루션 해킹 nlme동작을 찾았습니다 . 편집에서 볼 수 있듯이 문제는 nlmeNindividualxNpoints의 벡터를 비선형 함수에 전달하고 함수가 각 시점에 대해 값을 연결한다고 가정하는 사실에서 비롯됩니다 . 그러나 lsoda시간에 따라 방정식을 통합하므로 그렇게하지 마십시오 (즉, 값을 생성하려면 주어진 시간 지점까지 모든 시간이 필요합니다).

내 솔루션은 nlme내 함수에 전달 되는 매개 변수를 분해하고 , 계산을 수행하고, 벡터를 다시 만드는 것으로 구성됩니다.

detect_id <- function(vec){
  tmp <- c(0,diff(vec))
  out <- tmp
  out <- NA
  out[tmp < 0] <- 1:sum(tmp < 0)
  out <- na.locf(out,na.rm = F)
  rleid(out)
}

detect_id 시간 벡터를 단일 시간 벡터 식별자로 분해합니다.

detect_id(rep(1:10,3))
[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

그런 다음 각 개인에 대해 숫자 통합 루프를 수행하고 결과 벡터를 함께 바인딩하는 함수 :

solution_analy_ODE2_modif = function(omega2,esp2omega,time,y0,v0,yeq){
  tmp <- detect_id(time)
  
  out <- lapply(unique(tmp),function(i){
    idxs <- which(tmp == i)
    parms  <- c(esp2omega = esp2omega[idxs][1],
                omega2 = omega2[idxs][1],
                yeq = yeq[idxs][1])
    
    xstart = c(S1 =  y0[idxs][1], dS1 = v0[idxs][1])
    out_tmp <-  lsoda(xstart, time[idxs], ODE2_nls, parms)
    out_tmp[,2]
  }) %>% unlist()
  
  return(out)
}

nlme함수에 전달되는 것과 유사한 벡터를 전달하는 테스트 를합니다.

omega2vec <- rep(0.1,30)
eps2omegavec <- rep(0.1,30)
timevec <- rep(1:10,3)
y0vec <- rep(1,30)
v0vec <- rep(0,30)
yeqvec = rep(0,30)
solution_analy_ODE2_modif(omega2 = omega2vec,
                          esp2omega = eps2omegavec,
                          time = timevec,
                          y0 = y0vec,
                          v0 = v0vec,
                          yeq = yeqvec)
 [1]  1.0000000  0.9520263  0.8187691  0.6209244  0.3833110  0.1321355 -0.1076071 -0.3143798
 [9] -0.4718058 -0.5697255  1.0000000  0.9520263  0.8187691  0.6209244  0.3833110  0.1321355
[17] -0.1076071 -0.3143798 -0.4718058 -0.5697255  1.0000000  0.9520263  0.8187691  0.6209244
[25]  0.3833110  0.1321355 -0.1076071 -0.3143798 -0.4718058 -0.5697255

효과가있다. 시간 벡터가 10에서 0으로 전달되어 통합 문제가 발생하기 때문에 @tpetzoldt 메서드에서는 작동하지 않습니다. 여기서 저는 nlnme작동 방식을 해킹해야 합니다. 지금 :

fit <- nlme(model = signal ~ solution_analy_ODE2_modif (esp2omega,omega2,time,y0,v0,yeq), 
     data = data_simu,
     fixed = esp2omega + omega2 + y0 + v0 + yeq ~ 1,
     random = y0 ~ 1 ,
     groups = ~ ID, 
     start = c(esp2omega = 0.5, 
     omega2 = 0.5,
     yeq = 0,
     y0 = 1,
     v0 = 1))

매력처럼 작동

summary(fit)


Nonlinear mixed-effects model fit by maximum likelihood
  Model: signal ~ solution_analy_ODE2_modif(omega2, esp2omega, time, y0,      v0, yeq) 
 Data: data_simu 
        AIC       BIC   logLik
  -597.4215 -567.7366 307.7107

Random effects:
 Formula: list(y0 ~ 1, v0 ~ 1)
 Level: ID
 Structure: General positive-definite, Log-Cholesky parametrization
         StdDev     Corr  
y0       0.61713329 y0    
v0       0.67815548 -0.269
Residual 0.03859165       

Fixed effects: esp2omega + omega2 + y0 + v0 + yeq ~ 1 
              Value  Std.Error  DF   t-value p-value
esp2omega 0.4113068 0.00866821 186  47.45002  0.0000
omega2    1.0916444 0.00923958 186 118.14876  0.0000
y0        0.3848382 0.19788896 186   1.94472  0.0533
v0        0.1892775 0.21762610 186   0.86974  0.3856
yeq       0.0000146 0.00283328 186   0.00515  0.9959
 Correlation: 
       esp2mg omega2 y0     v0    
omega2  0.224                     
y0      0.011 -0.008              
v0      0.005  0.030 -0.269       
yeq    -0.091 -0.046  0.009 -0.009

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-3.2692477 -0.6122453  0.1149902  0.6460419  3.2890201 

Number of Observations: 200
Number of Groups: 10