Неравенство с функцией Ламберта $x^{{\operatorname{W}(2ex)}^{2x}}+(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}\leq 1$

Dec 11 2020

Позволять $0<x<1$ тогда у нас есть:

$$x^{{\operatorname{W}(2ex)}^{2x}}+(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}\leq 1$$

Случай равенства $x=0.5$.

Чтобы показать это, я попытался следовать леммам 7.1 и 7.2 этой статьи Василе Чиртоайе. Проблема в том, что полученное выражение ужасно!

Я пробовал также неравенство Бернулли с каким-либо эффектом, потому что оно недостаточно четкое.

Обновление 18/12/2020:

Это еще одна попытка. Мы можем построить такое приближение:

Позволять $0<\beta<x\leq 0.5$ тогда мы должны определить такие константы, что:

$$x^{{\operatorname{W}(2ex)}^{2x}}\leq \frac{1}{2}\operatorname{W}^{\alpha}(2ex)$$

Мы численно $\frac{115}{100}<\alpha<\frac{125}{100}$

Чтобы уменьшить разрыв, я попытался ввести линейную функцию: $$x^{{\operatorname{W}(2ex)}^{2x}}\leq \frac{1}{2}\operatorname{W}^{\alpha}(2ex)+ax+b$$

Но опять же, этого недостаточно, поэтому мы можем рассмотреть общий многочлен, например:

$$x^{{\operatorname{W}(2ex)}^{2x}}\leq \frac{1}{2}\operatorname{W}^{\alpha}(2ex)+\sum_{k=0}^{n}a_nx^n$$

Что ж, это первый шаг, и в будущем я попытаюсь найти коэффициенты этого общего многочлена.

Обновление от 20.12.2020:

Мы можем переформулировать проблему следующим образом:

Позволять $x,y>0$ такой, что $ye^y+xe^x=2e$ тогда у нас есть:

$$\left(\frac{xe^x}{2e}\right)^{(x)^{\frac{xe^x}{e}}}+\left(\frac{ye^y}{2e}\right)^{(y)^{\frac{ye^y}{e}}}\leq 1$$

Где я использую обратную функцию функции Ламберта.

Хорошо используя форму $f(x)=\left(\frac{xe^x}{2e}\right)^{(x)^{\frac{xe^x}{e}}}=g(x)^{h(x)}$ Я могу показать, что функция $f(x)$ выпуклый на $(0,W(2e))$Итак (я пробовал), мы можем использовать неравенство Слейтера, чтобы найти верхнюю границу. Как это не работает. С другой стороны, мы можем использовать неравенство Караматы, но я не пробовал!


Что ж, если мы используем Караматы, у меня есть стратегия:

По неравенству Караматы и $0\leq\varepsilon_n'\leq\varepsilon_n<y<x$:

$$f(x)+f(y)\leq f(x+\varepsilon_n)+f(y-\varepsilon_n')$$

С участием $(y-\varepsilon_n')e^{y-\varepsilon_n'}+(x+\varepsilon_n)e^{x+\varepsilon_n}\geq 2e$

Теперь мы хотим повторить процесс, чтобы получить серию неравенств следующего вида:

$$f(x)+f(y)\leq f(x+\varepsilon_n)+f(y-\varepsilon_n')\leq f(x+\varepsilon_{n-1})+f(y-\varepsilon_{n-1}')< 1$$

Но это очень сложно.


Это не работает для всех значений, но я думаю, что у нас есть неравенство $y> 0.5 \geq x$ :

$$p(x)=(1-x^{xe^{x-1}})^2+x^{xe^{x-1}} \frac{xe^{x-1}}{2} (2-x^{xe^{x-1}})-x^{xe^{x-1}} \frac{xe^{x-1}}{2} (1-x^{xe^{x-1}}) \ln\left(\frac{xe^{x-1}}{2}\right)$$ У нас есть : $$f(x)+f(y)\leq p(y)+2^{-\varepsilon}p^{1+\varepsilon}(x)< 1$$

С участием $0\leq \varepsilon \leq\frac{1}{10}$

Где я использую лемму 7.2 из статьи выше.


Последняя идея:

Используя теорему мажорирования:

Позволять $a\geq b>0$ и $c\geq d >0$ и $n$ натуральное число, достаточно большое, чтобы:

$$a\geq c$$

И :

$$\left(a\frac{n}{n+1}+c\frac{1}{n+1}\right)\left(b\frac{n}{n+1}+d\frac{1}{n+1}\right)\geq cd$$

Тогда у нас есть:

$$a+b\geq c+d$$

Доказательство: это прямое следствие неравенства Караматы.

У нас есть еще одна теорема:

Позволять $2>x,y>0$ ,$n$ достаточно большое натуральное число и $\varepsilon>0 $

Если у нас есть :

$$xy<1-\varepsilon $$ $$x+y<2-\varepsilon$$ тогда у нас есть:

$$\ln\left(\frac{n}{n+1}+x\frac{1}{n+1}\right)+\ln\left(\frac{n}{n+1}+y\frac{1}{n+1}\right)\leq 0$$


Пример :

Используя теорему о мажоризации, имеем ($x=0.4$):

$$(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}< 1-\operatorname{W}^{1.25}(2ex)0.5$$

И :

$$\left(\frac{1}{4000}x^{{\operatorname{W}(2ex)}^{2x}}+\frac{3999}{4000}\operatorname{W}^{1.25}(2ex)0.5\right)\left(\frac{1}{4000}(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}+\frac{3999}{4000}(1-\operatorname{W}^{1.25}(2ex)0.5)\right)< (1-\operatorname{W}^{1.25}(2ex)0.5)\operatorname{W}^{1.25}(2ex)0.5$$

Разделив обе стороны на правую часть и используя вторую теорему, отметив, что:

$$\frac{x^{{\operatorname{W}(2ex)}^{2x}}(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}}{\operatorname{W}^{1.25}(2ex)0.5(1-\operatorname{W}^{1.25}(2ex)0.5)}<1-\varepsilon$$

И :

$$\frac{x^{{\operatorname{W}(2ex)}^{2x}}}{\operatorname{W}^{1.25}(2ex)0.5}+\frac{(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}}{(1-\operatorname{W}^{1.25}(2ex)0.5)}<2-\varepsilon\quad (I)$$

Теперь я думаю, что это проще, потому что мы можем логарифмировать и изучать поведение функции.

Чтобы доказать $(I)$ мы можем использовать границу:

Позволять $0<x<\frac{1}{100}$ :

$$e^x<(1+x)^2-x$$

Очевидно, если мы изучим отдельно разные элементы LHS.

Затем учиться $(I)$ у нас есть неплохое приближение:

Позволять $0< x \leq \frac{1}{2}$ тогда у нас есть:

$${\operatorname{W}(2ex)}^{2x}\geq (2x)^{\frac{915}{1000}\left(x\right)^{\left(\frac{87}{100}\right)}}$$


Фактически мы имеем следующее уточнение на $(0,0.5]$ :

$$x^{{\operatorname{W}(2ex)}^{2x}}+(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}\leq x^{(2x)^{\frac{915}{1000}\left(x\right)^{\left(\frac{87}{100}\right)}}}+ (1-x)^{(2(1-x))^{\frac{915}{1000}\left((1-x)\right)^{\left(\frac{87}{100}\right)}}}\leq 1$$


Замечания: Метод, использующий теорему мажорирования, имеет два преимущества. Нам нужно выбрать два значения одного порядка относительно значений в LHS. Один может быть хуже (а другой необходим лучше). С другой стороны, оценка с экспонентой, его точность зависит от начального приближения в$(I)$. Наконец, если мы разделим на две части, LHS в$(I)$ и если для одного мы докажем более сильный результат, то другой элемент будет немного легче показать.


Я строю приближение на $(0,1)$ которые имеют вид:

$$x^{(2x)^{\frac{915}{1000}\left(x\right)^{\left(\frac{87}{100}\right)}}}\simeq \left(\left(2^{(2x)^{x^{1.25}}} \frac{x}{2}\right)^{0.5}0.5^{0.5}*0.5^{{(2 (1-x))}^{x^{-0.25}}}\right)^{0.5}\quad (S)$$

Вы можете играть с коэффициентами $-0.25$ и $1.25$ которые не самые лучшие (дайте мне комментарий, если вам лучше, пожалуйста :-))


Мы можем немного улучшить $(S)$ используя логарифм, мы имеем $[0.5,1)$:

$$x^{(2x)^{\frac{915}{1000}\left(x\right)^{\left(\frac{87}{100}\right)}}}\simeq \left(\left(2^{(2x)^{x^{3}}} \frac{x}{2}\right)^{0.5}0.5^{0.5}*0.5^{{(2 (1-x))}^{x^{-0.2}}}\right)^{0.5}-0.5\ln\left(\left(\left(2^{(2x)^{x^{3}}} \frac{x}{2}\right)^{0.5}0.5^{0.5}*0.5^{{(2 (1-x))}^{x^{-0.2}}}\right)^{0.5}\right)+0.5\ln\left(x^{(2x)^{\frac{915}{1000}\left(x\right)^{\left(\frac{87}{100}\right)}}}\right)\quad (S')$$

Мы можем заменить коэффициент $\frac{915}{1000}$ от $\frac{912}{1000}$$3$ от $3.5$ и наконец $-0.2$ от $-0.19$ и я думаю, что это тот же порядок, поэтому мы можем применить теорему о мажоризации.

Есть идеи решить это?

Спасибо

Ответы

2 RiverLi Dec 26 2020 at 14:07

Некоторые мысли

Позвольте мне показать, как использовать границы для случая $0 < x < \frac{1}{10}$.

Обозначить $F = W(2\mathrm{e}x)^{2x}$ и $G = W(2\mathrm{e}(1-x))^{2(1-x)}$. Нам нужно доказать, что$x^F + (1-x)^G \le 1$.

Факт 1 : Если$u > 0$ и $0 \le v \le 1$, тогда $u^v \ge \frac{u}{u + v - uv}$.
(Примечание: согласно неравенству Бернулли,$(\frac{1}{u})^v=(1+\frac{1}{u}-1)^v\leq 1 + (\frac{1}{u}-1)v = \frac{u + v - uv}{u}$.)

Факт 2 :$0 \le 5 - 5F \le 1$ для всех $x\in (0, 1/2]$.

Факт 3 :$1 \le G < 2$ для всех $x\in (0, 1/2]$.

Факт 4 :$W(y) \ge \frac{y}{y + 1}$ для всех $y\ge 0$.
(Подсказка: используйте$W(y)\mathrm{e}^{W(y)} = y$ для всех $y\ge 0$ и это $u \mapsto u\mathrm{e}^u$ строго возрастает $(0, \infty)$.)

Факт 5 :$F \ge \left(\frac{2\mathrm{e}x}{1 + 2\mathrm{e}x}\right)^{2x}$ для всех $x > 0$. (Используйте факт 4.)

Факт 6 :$G = W(2\mathrm{e}(1-x))^{1 - 2x} W(2\mathrm{e}(1-x)) \ge \frac{W(2\mathrm{e}(1-x))^2}{2x W(2\mathrm{e}(1-x)) + 1 - 2x}$ для всех $x \in (0, 1/2]$.
(Подсказка: используйте Факт 1,$u = W(2\mathrm{e}(1-x))$, $v = 1-2x$.)

Факт 7 :$W(2\mathrm{e}(1-x)) \ge \frac{48}{35} - \frac{3}{5}x$ для всех $x$ в $(0, 1/10)$.

Факт 8 :$G \ge \frac{9(16-7x)^2}{-1470x^2+910x+1225}$ для всех $x$ в $(0, 1/10)$. (Используйте Факты 6-7.)

Теперь, по фактам 1-2, мы имеем $$x^F = \frac{x}{x^{1-F}} = \frac{x}{\sqrt[5]{x}^{5 - 5F} } \le x + (x^{4/5} - x)(5 - 5F).$$ (Заметка: $u = \sqrt[5]{x}, v = 5-5F$.)

По фактам 1, 3 имеем $$(1-x)^G = \frac{(1-x)^2}{(1-x)^{2-G}} \le (1-x)^2 + x(1-x)(2-G).$$ (Заметка: $u = 1-x, v = 2-G$.)

Достаточно доказать, что $$ x + (x^{4/5} - x)(5 - 5F) + (1-x)^2 + x(1-x)(2-G) \le 1$$ или $$5(x^{4/5} - x)(1 - F) \le x(1-x)(G-1).$$

По фактам 5, 8 достаточно доказать, что $$5(x^{4/5} - x)\left(1 - \left(\frac{2\mathrm{e}x}{1 + 2\mathrm{e}x}\right)^{2x}\right) \le x(1-x)\left(\frac{9(16-7x)^2}{-1470x^2+910x+1225}-1\right).$$

Опущено.

2 ClaudeLeibovici Dec 26 2020 at 17:33

Чтобы сделать задачу более симметричной, пусть $x=t+\frac 12$ и развернуть функцию как ряд Тейлора вокруг $t=0$.

У вас будет $$f(t)=1+\sum_{n=1}^p a_n t^{2n}$$ где $a_n$- многочлены степени $2n$ в $k=\log(2)$ $$a_1=\left\{2,-\frac{13}{4},\frac{1}{2}\right\}$$ $$a_2=\left\{\frac{15}{4},-\frac{1607}{192},\frac{439}{96},-\frac{23}{24},\frac{1}{24}\right\}$$ $$a_3=\left\{\frac{14453}{2880},-\frac{331189}{23040},\frac{142597}{11520},-\frac{7 9}{16},\frac{541}{576},-\frac{11}{160},\frac{1}{720}\right\}$$ $$a_4=\left\{\frac{294983}{53760},-\frac{10787687}{573440},\frac{19112773}{860160}, -\frac{1149103}{92160},\frac{368011}{92160},-\frac{5243}{7680},\frac{15}{2 56},-\frac{43}{20160},\frac{1}{40320}\right\}$$ Все эти коэффициенты отрицательны (это не так для $n \geq 5$).

Делаем коэффициенты рациональными $$g(t)=1-\frac{64 t^2}{5119}-\frac{121 t^4}{738}-\frac{261 t^6}{598}-\frac{182 t^8}{865}+\frac{2309 t^{10}}{1084}+\frac{16024 t^{12}}{1381}+\frac{26942 t^{14}}{613}+O\left(t^{16}\right)$$

Используя приведенные выше термины, совпадение почти идеально для $0\leq t\leq 0.4$ .

Между этими границами $$\int_0^{0.4}\Big[f(t)-g(t)\big]^2\,dt=1.91\times 10^{-10}$$

Было бы замечательно доказать, что минимальное значение функции немного больше, чем $0.99$.