Очень низкий перекрестный балл для регрессии с большим .corr () между функцией и результатом
Я пытаюсь сделать регресс с помощью sklearn между одной функцией и одним результатом. Это набор данных, который у меня есть:
bruto ukupno gradjevinski din
0 2494.98 857951.27
1 2912.60 694473.11
2 3397.50 1310529.72
3 2678.00 199688.14
4 4310.00 1377366.95
5 2086.28 569312.33
6 3061.80 660803.42
7 4095.00 1187732.61
8 3997.00 1304793.08
9 6503.88 1659629.13
10 6732.00 1264178.31
11 940.10 172497.94
12 1543.00 598772.40
13 5903.85 809681.19
14 2861.61 333983.85
15 3682.76 1430771.50
16 2802.00 1145812.21
17 3032.00 356840.54
18 2635.00 543912.80
19 3749.00 1004940.27
20 4300.50 1889560.55
21 9722.00 2137376.95
22 3823.33 891633.50
23 1648.21 335115.40
24 24575.00 19273129.14
25 3926.00 1223803.28
26 3228.00 874000.00
27 4062.00 1090000.00
28 1316.24 332718.54
29 2497.99 519398.70
30 12123.94 2504783.69
31 2057.50 957042.37
32 2495.00 857951.27
33 3770.73 1743978.85
34 864.00 251269.48
35 774.71 192487.26
Я нашел корреляцию между функцией и результатом с помощью .corr ():
bruto ukupno gradjevinski din
bruto 1.000000 0.878914
ukupno gradjevinski din 0.878914 1.000000
У меня corr 0,87, и я думаю, что это очень прилично для регрессии, но когда я создаю модель регрессии и когда я получаю оценку cross-val, я получаю значение для оценки cross-val, которое отрицательно и больше 1 (иногда -50,23) и это для меня очень странно. Я пробовал использовать множество разных моделей и с разным количеством складок, но результаты те же. Это код регрессии:
features = df[['bruto']]
results = df[['ukupno gradjevinski din']]
regressors = [["Linear Regression", LinearRegression(normalize=False)],
["Lasso Regression", Lasso(normalize=False)],
["Gaussian Process Regressor", GaussianProcessRegressor()],
["SVR linear", SVR(kernel = 'linear', gamma='scale', max_iter = 1500)],
["SVR poly 2", SVR(kernel = 'poly', degree=2, gamma='scale', max_iter = 1500)],
["SVR poly 3", SVR(kernel = 'poly', degree=3, gamma='scale', max_iter = 1500)],
["SVR poly 4", SVR(kernel = 'poly', degree=4, gamma='scale', max_iter = 1500)],
["SVR poly 5", SVR(kernel = 'poly', degree=5, gamma='scale', max_iter = 1500)],
["SVR rbf C=0.01", SVR(kernel = 'rbf', C=0.01, gamma='scale', max_iter = 1500)],
["SVR rbf C=0.1", SVR(kernel = 'rbf', C=0.1, gamma='scale', max_iter = 1500)],
["SVR rbf C=0.5", SVR(kernel = 'rbf', C=0.5, gamma='scale', max_iter = 1500)],
["SVR rbf C=1", SVR(kernel = 'rbf', C=1, gamma='scale', max_iter = 1500)],
["SVR rbf C=10", SVR(kernel = 'rbf', C=10.0, gamma='scale', max_iter = 1500)],
["SVR rbf C=20", SVR(kernel = 'rbf', C=20.0, gamma='scale', max_iter = 1500)],
["SVR rbf C=50", SVR(kernel = 'rbf', C=50.0, gamma='scale', max_iter = 1500)],
["SVR sigmoid", SVR(kernel = 'sigmoid', gamma='scale', max_iter = 1500)],
["GradientBoostingRegressor", GradientBoostingRegressor()],
["RandomForestRegressor", RandomForestRegressor(n_estimators = 150)],
["DecisionTreeRegressor", DecisionTreeRegressor(max_depth=10)],
["Bagging Regressor TREE", BaggingRegressor(base_estimator = DecisionTreeRegressor(max_depth=15))],
["Bagging Regressor FOREST", BaggingRegressor(base_estimator = RandomForestRegressor(n_estimators = 100))],
["Bagging Regressor linear", BaggingRegressor(base_estimator = LinearRegression(normalize=True))],
["Bagging Regressor lasso", BaggingRegressor(base_estimator = Lasso(normalize=True))],
["Bagging Regressor SVR rbf", BaggingRegressor(base_estimator = SVR(kernel = 'rbf', C=10.0, gamma='scale'))],
["Extra Trees Regressor", ExtraTreesRegressor(n_estimators = 150)],
["K-Neighbors Regressor 1", KNeighborsRegressor(n_neighbors=1)],
["K-Neighbors Regressor 2", KNeighborsRegressor(n_neighbors=2)],
["K-Neighbors Regressor 3", KNeighborsRegressor(n_neighbors=3)],
["AdaBoostRegressor", AdaBoostRegressor(base_estimator=None)],
["AdaBoostRegressor tree", AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=15))],
["AdaBoostRegressor forest", AdaBoostRegressor(base_estimator=RandomForestRegressor(n_estimators = 100))],
["AdaBoostRegressor lin reg", AdaBoostRegressor(base_estimator=LinearRegression(normalize=True))],
["AdaBoostRegressor lasso", AdaBoostRegressor(base_estimator = Lasso(normalize=True))]]
for reg in regressors:
try:
scores = cross_val_score(reg[1], features, results, cv=5)
scores = np.average(scores)
print('cross val score', scores)
print()
except:
continue
Я пытался масштабировать свои функции с помощью Normalizer, StandardScaler и MinMaxScaler, но результаты те же. Любая помощь?
Ответы
Я собирался опубликовать свой ответ на другом форуме, но он перенесен сюда.
Вы должны помнить о нескольких важных вещах:
-
Выигрывает не тот, у кого лучший алгоритм. Это у кого больше всего данных. (Банко и Брилл, 2001)
Банк и Брилл в 2001 году провели сравнение 4 различных алгоритмов, они продолжали увеличивать размер обучающей выборки до миллионов и пришли к приведенному выше выводу. И ваших данных слишком мало !
- Всякий раз, когда вы говорите о линейных моделях, просто помните их врага - выбросов . Если вы нанесете на график свои данные, вы это ясно увидите.

cross_val_score
возвращает R ^ 2 по умолчанию почти для любой линейной модели (т.е. регрессора). Лучшее значение этой метрики = 1 (т.е. полностью соответствует), или = 0 (т.е. горизонтальная линия), или оно может быть отрицательным (т.е. хуже, чем горизонтальная линия). Больше информации здесь . Затем в проведенном мною эксперименте вы увидите, насколько верны результаты.Альтернативная модель была бы
Multi-layer Perceptron Regressor
; с количеством слоев = 3 модель будет отображать любую сложную функцию.Перекрестная проверка будет лучше всего работать, если у вас достаточно данных. Однако в вашем случае оценки по резюме заметно различаются.
Обдумайте, пожалуйста, результаты следующего эксперимента, который не требует пояснений:
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
from sklearn.neural_network import MLPRegressor
from scipy.stats import pearsonr
import numpy as np
import matplotlib.pyplot as plt
X = np.array([2494.98,2912.6,3397.5,2678,4310,2086.28,3061.8,4095,3997,
6503.88,6732,940.1,1543,5903.85,2861.61,3682.76,2802,3032,
2635,3749,4300.5,9722,3823.33,1648.21,24575,3926,3228,4062,1316.24,
2497.99,12123.94,2057.5,2495,3770.73,864,774.71]).reshape(-1, 1)
y = np.array([857951.27,694473.11,1310529.72,199688.14,1377366.95,569312.33,660803.42,1187732.61,
1304793.08,1659629.13,1264178.31,172497.94,598772.4,809681.19,333983.85,1430771.5,1145812.21,
356840.54,543912.8,1004940.27,1889560.55,2137376.95,891633.5,335115.4,19273129.14,1223803.28,
874000,1090000,332718.54,519398.7,2504783.69,957042.37,857951.27,1743978.85,251269.48,192487.26])
X_, y_ = zip(*sorted(zip(X, y)))
plt.plot(X_, y_, '-x')
plt.title("Plot of Dataset")
plt.show()
print("Linear Regression :: Before Removing An Outlier")
reg = LinearRegression()
print(np.average(cross_val_score(reg, X, y, cv=3)))
X, y = X_[:-1], y_[:-1]
plt.plot(X, y, '-x')
plt.title("Plot of Dataset After Removing Outlier")
plt.show()
print("Linear Regression :: After Removing An Outlier")
reg = LinearRegression()
print(np.average(cross_val_score(reg, np.array(X).reshape(-1, 1), y, cv=3)))
print("Multi-layer Perceptron Regressor :: The Effect of Mapping Complicated / Non-Linear Function")
mlp = MLPRegressor(hidden_layer_sizes=(16, 16, 16), random_state=2020, activation='identity', max_iter=1000)
print(np.average(cross_val_score(mlp, np.array(X).reshape(-1, 1), y, cv=3)))
ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ
Это после удаления только одного экстремального значения ( без дальнейшего исследования или выполнения какой-либо сложной работы, такой как использование любого детектора выбросов ). Как видите, не может быть единой линии, подходящей ко всем точкам.

Linear Regression :: Before Removing An Outlier
Average CVs Score: -1.7085612243433703
Linear Regression :: After Removing An Outlier
Average CVs Score: -0.12386365189238795
Multi-layer Perceptron Regressor :: The Effect of Mapping Complicated / Non-Linear Function
Average CVs Score: 0.16131374234257037