Почему константа диссоциации воды Kw остается постоянной? [закрыто]

Aug 20 2020

В $\pu{25 ^\circ C}$ в состоянии равновесия значение $K_\mathrm{w}$ является $\pu{1\times 10^{-14} M}$ и концентрация $\ce{H+}$ а также $\ce{OH-}$ равно т.е. $\pu{1\times 10^{-7} M}$.

Теперь, если мы добавим $\ce{HCl}$ к нему $\ce{HCl}$ сформирует $\ce{H3O+}$ и поэтому концентрация $\ce{H+}$увеличивается, и поэтому равновесие смещается влево, чтобы противодействовать изменениям. В результате концентрация$\ce{OH-}$ уменьшается, но почему до сих пор $K_\mathrm{w}$остается такой же. Если мы добавим слишком много$\ce{HCl}$ например, 1 моль, тогда мы знаем, что он полностью диссоциирует и сформирует $\ce{H3O+}$ чья концентрация будет $\pu{1 M}$.

Итак, что будет с $K_\mathrm{w}$? Он по-прежнему остается постоянным, но почему? По-прежнему ли концентрация$\ce{H+}$ не может подняться выше $1\times 10^{-14}$ но почему?

Ответы

3 MathewMahindaratne Aug 20 2020 at 02:37

Ваш вопрос отражает ваши знания в химии, поэтому я постараюсь сделать это объяснение максимально простым.

Вода проводит электричество, поскольку содержит $\ce{H+}$ а также $\ce{OH-}$ ионы за счет автоионизации:

$$\ce{H2O <=> H+ + OH- \tag1}$$

Было определено, что эта ионизация постоянна при $\pu{25 ^\circ C}$. Таким образом, по определению:

$$K_\mathrm{w} = [\ce{H+}][\ce{OH-}] = 1.0 \times 10^{-14} \tag2$$

Соответственно, по определению для чистой воды $ [\ce{H+}]=[\ce{OH-}]= 1.0 \times 10^{-7}$. Кроме того, существует широко распространенный принцип химии, называемый принципом Ле Шателье:

Принцип Ле Шателье - это наблюдение о химическом равновесии реакций. В нем говорится, что изменения температуры, давления, объема или концентрации системы приведут к предсказуемым и противоположным изменениям в системе для достижения нового состояния равновесия.

Соответственно, увеличение концентрации реагентов (разновидностей в левой части реакции) будет направлять реакцию вправо (больше продуктов), в то время как увеличение концентрации продуктов (разновидностей в правой части реакции) приведет к тому, что реакция будет слева (больше реагентов). При постоянной температуре, даже если концентрации видов (например, здесь они$\ce{H+}$ а также $\ce{OH-}$ в уравнении $(1)$) в новом состоянии равновесия изменяется, константа равновесия остается прежней. Другими словами, константа равновесия зависит только от температуры.

Согласно принципу Ле Шателье, в уравнении $(1)$, если вы добавите еще $\ce{H+}$ или $\ce{OH-}$(RHS), равновесие будет отрегулировано, чтобы уменьшить это количество путем производства большего количества воды. Но поскольку эта добавка находится при постоянной температуре,$K_\mathrm{w}$ остается постоянным.

3 MaxW Aug 21 2020 at 04:25

Ответ пользователя Мэтью Махиндаратне отличный, но я хотел бы остановиться на одном моменте. Равновесие задается химическим уравнением:

$$\ce{H2O <=> H+ + OH- \tag1}$$

и математическое уравнение обычно сводится к:

$$K_\mathrm{w} = [\ce{H+}][\ce{OH-}] = 1.0 \times 10^{-14} \tag2$$

Однако, размышляя о выражениях равновесия в целом, вы можете увидеть, что математическое выражение для (1) должно быть:

$$K^*_\mathrm{w} =\dfrac{[\ce{H+}][\ce{OH-}]}{[\ce{H2O}]}\tag{3}$$

Дело в том, что для разбавленных водных растворов$[\ce{H2O}]$ является константой и, следовательно:

$$K_\mathrm{w} = [\ce{H2O}]\times K^*_\mathrm{w} = [\ce{H+}][\ce{OH-}]\tag{4}$$

Таким образом, растворы со значительными количествами некоторых смешиваемых органических растворителей не являются «разбавленными водными» растворами, и математическое уравнение (2) не выполняется. Это не означает, что математическое уравнение (3) было бы значительно лучше, а скорее связано, чтобы дать некоторое понимание того, почему простые выражения равновесия не работают.

2 Poutnik Aug 20 2020 at 02:45

Можно сказать, что при данной температуре скорость автодиссоциации воды постоянна, но скорость рекомбинации ионов пропорциональна $[\ce{H+}][\ce{OH-}]$. Поскольку это пропорционально вероятности, два таких иона встретятся друг с другом, потому что скорость реакции ограничена диффузией. Согласно Википедии ,

Обратная реакция рекомбинации $\ce{H3O+ + OH− -> 2 H2O}$ является одной из самых быстрых известных химических реакций с константой скорости реакции $\pu{1.3×10^11 M−1 s−1}$при комнатной температуре. Такая высокая скорость характерна для реакции, контролируемой диффузией, в которой скорость ограничена скоростью молекулярной диффузии.

Кинетика изменения [H +] подобна:

$$\frac{\mathrm{d}[\ce{H+}]}{\mathrm{d}t} = k_1 - k_2[\ce{H+}][\ce{OH-}]$$ где $$K_\mathrm{w} = \frac{k_1}{k_2}$$ а также $$k_1 = k_{1\mathrm{a}}[\ce{H2O}]$$

подразумевая $[\ce{H2O}] \simeq \pu{55 mol/L}$ постоянно.

Следствием этого является то, что произведение концентраций ионов в состоянии равновесия должно быть постоянным.

Если $[\ce{H+}][\ce{OH-}] \gt K_\mathrm{w}$, то ионы рекомбинируют быстрее, чем вода диссоциирует, пока она не станет равной.

Если $[\ce{H+}][\ce{OH-}] \lt K_\mathrm{w}$, тогда вода диссоциирует быстрее, чем ионы рекомбинируют, пока она не станет равной.

Ионная сила и коэффициенты активности, или значительное присутствие других неионогенных соединений усложняют ситуацию, но вышеизложенное как общий принцип химического равновесия остается.