построение списка-массива

Jan 16 2021

Я хочу создать список ix={1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4}

я могу сделать

L=4;
ix = ConstantArray[0, Length[L]^2]
k = 0;
For[i = 1, i <= Length[ix], i++, If[Mod[i, L] == 1, k = k + 1, k]; ix[[i]] = k;]

ix
(* output *)
{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}

Но мне это не нравится. Есть ли более «математический» способ сделать это?

Ответы

20 SimonWoods Jan 16 2021 at 19:23

Как вы видите из комментариев и ответов, естественный способ сделать это в Mathematica - создать 2D-массив, а затем сгладить его. Еще пара примеров такого подхода:

Flatten[Table[i, {i, 4}, 4]]

Flatten[Array[# &, {4, 4}]]

В этом конкретном случае вы также можете сделать что-то вроде:

Ceiling[Range[16]/4]
13 bills Jan 17 2021 at 01:23

Вы также можете интерпретировать это как внешний продукт:

Outer[Times, Range[4], ConstantArray[1, 4]] // Flatten
{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}
12 kglr Jan 16 2021 at 22:29

Вы также можете использовать форму с 4 аргументами Array:

Array[# &, {4, 4}, 1, Flatten @* List]
{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}
Array[Range @ 4 &, 4, 1, Sort @* Join]
{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}
Array[{1, 0, 0, 0} &, 4, 1, Accumulate @* Join]
{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}

И еще несколько дополнительных методов:

Round[1/2 + 6 Range[16]/25]

Sort @ Mod[Range @ 16, 4, 1]

Join @@ Table @@@ Table[{i, 4}, {i, 4}]

1 + ⌊Most @ Subdivide[4, 16]⌋

Join @@ Accumulate @ Table[1, 4, 4]

Accumulate @ Upsample[{1, 1, 1, 1}, 4] (*thanks: Simon Woods *)

⌈ArrayResample[Range@4, 16, {"Bin", 1}]⌉

Internal`RepetitionFromMultiplicity @ Thread[{Range @ 4, 4}]
10 CATrevillian Jan 16 2021 at 18:44

Он использует анонимную функцию в тандеме с ConstantArrayи Rangeделает то, что вы хотите:

ConstantArray[#,4]&/@Range@4//Flatten

{1,1,1,1,2,2,2,2,3,3,3,3,3,4,4,4,4}

7 wuyudi Jan 17 2021 at 13:53

Другой путь:

Quotient[Range@16, 4, -3]

{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}

7 user1066 Jan 16 2021 at 22:12

Винтовка / гнездо

Range[4]//Nest[Riffle[#,#]&,#,2]& 

Альтернативно:

Range[4]//Riffle[#,#]&//Riffle[#,#]&

{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}

BitShiftRight

После изящного Ceiling метода Саймона Вудса:

1+Table[BitShiftRight[n,2], {n, 0, 15}]

Альтернативно:

1+BitShiftRight[#,2]&@Range[0,15]

IntegerPart

Из документации для BitShiftRight-> Details и взаимосвязь между BitShiftRightи IntegerPart:

1+IntegerPart@Table[n/4, {n, 0, 15}]

Альтернативно:

1+IntegerPart[Range[0,15]/4]

Случаи

Cases[Range[4], x_:> Splice@{x,x,x,x}]

(Первоначально комментарий)

6 wxffles Jan 18 2021 at 04:00
CoefficientList[Series[x^4/((1 - x) (1 - x^4)), {x, 0, 19}], x][[5 ;;]]

.

LinearRecurrence[{1, 0, 0, 1, -1}, {1, 1, 1, 1, 2}, 16]

.

Table[Length@IntegerPartitions[k - 1, All, {1, 4}], {k, 16}]
5 MichaelE2 Jan 18 2021 at 05:28

Еще пара:

PadRight[{Range@4}\[Transpose], {4, 4}, "Fixed"] // Flatten
Outer[# &, #, #] &@Range@4 // Flatten

Обновление - Дополнительные:

Range[4] SparseArray[{}, {4, 4}, 1] // Flatten
With[{p = ConstantArray[1, 4]},
  SparseArray[{Band[p] -> 1}, Length[p] p]@"NonzeroPositions" // Flatten
  ]
TensorProduct[Range@4, ConstantArray[1, {4}]] // Flatten
3 SneezeFor16Min Jan 29 2021 at 02:34

Рекомендуем:

Quotient[Range[4, 19], 4] (* ~1.759μs *)

Контрольный показатель

Quotient[Range@16, 4, -3] (* ~2.554μs *)
Outer[Times, Range[4], ConstantArray[1, 4]] // Flatten (* ~2.573μs *)

Internal`RepetitionFromMultiplicity @ Thread[{Range @ 4, 4}] (* ~3.498μs *)
Flatten@Transpose@ConstantArray[Range@4, 4] (* ~3.527μs *)
Flatten[ConstantArray[Range[4], 4], {2, 1}] (* ~3.701μs *)
Flatten[Table[i, {i, 4}, 4]] (* ~3.919μs *)
Range[4]//Riffle[#,#]&//Riffle[#,#]& (* ~3.928μs *)

1+BitShiftRight[#,2]&@Range[0,15] (* ~4.191μs *)
Range[4]//Nest[Riffle[#,#]&,#,2]& (* ~4.411μs *)
Array[{1, 0, 0, 0} &, 4, 1, Accumulate @* Join] (* ~4.747μs *)

Sort@Mod[Range@16, 4, 1] (* ~5.506μs *)
Array[Range @ 4 &, 4, 1, Sort @* Join] (* ~5.655μs *)
Range[4] SparseArray[{}, {4, 4}, 1] // Flatten (* ~5.853μs *)
Outer[# &, #, #] &@Range@4 // Flatten (* ~5.974μs *)

Join @@ Accumulate @ Table[1, 4, 4] (* ~6.300μs *)
Flatten[Array[# &, {4, 4}]] (* ~6.833μs *)

PadRight[{Range@4}\[Transpose], {4, 4}, "Fixed"] // Flatten (* ~7.013μs *)
Join @@ Table @@@ Table[{i, 4}, {i, 4}] (* ~7.589μs *)

Cases[Range[4], x_:> Splice@{x,x,x,x}] (* ~8.041μs *)
Array[# &, {4, 4}, 1, Flatten @* List] (* ~8.519μs *)

1+Table[BitShiftRight[n,2], {n, 0, 15}] (* ~9.554μs *)

ConstantArray[#,4]&/@Range@4//Flatten (* ~10.058μs *)
Ceiling[Range[16]/4] (* ~11.210μs *)
1 + ⌊Most @ Subdivide[4, 16]⌋ (* ~13.635μs *)
1+IntegerPart@Table[n/4, {n, 0, 15}] (* ~18.513μs *)
TensorProduct[Range@4, ConstantArray[1, {4}]] // Flatten (* ~18.924μs *)
Round[1/2 + 6 Range[16]/25] (* ~22.859μs *)
Table[Length@IntegerPartitions[k - 1, All, {1, 4}], {k, 16}] (* ~58.000μs *)

Accumulate @ Upsample[{1, 1, 1, 1}, 4] (* ~194.7μs with 6k runs *)
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 1, 1, 1, 2}, 16] (* ~336.2μs with 5k runs *)
CoefficientList[Series[x^4/((1 - x) (1 - x^4)), {x, 0, 19}], x][[5 ;;]] (* ~529.7μs with 18k runs *)

⌈ArrayResample[Range@4, 16, {"Bin", 1}]⌉ (* ~1620μs with 1k runs *)

Каждый повторяется 30k раз, если не указано иное. Можно сделать вывод о том, что в системе Mathematica ,

  • простая алгебра обычно работает быстрее
  • указано больше аргументов $\neq$ Быстрее
  • / дивизия тянет, по сравнению с Quotient
  • битовые операции не такие быстрые, как в C
  • /@медленно, если @может распространяться
  • ...
1 Roman Jan 19 2021 at 00:29
f[x_] = InterpolatingPolynomial[{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}, x] // Expand
(*    8256 - x*536645091/20020 + x^2*1798275487/48510 -
      x^3*128580216461/4365900 + x^4*25293360053/1663200 -
      x^5*8745144029/1603800 + x^6*768388933/544320 -
      x^7*315030731/1166400 + x^8*92080313/2381400 -
      x^9*237559139/57153600 + x^10*30277/90720 -
      x^11*50569/2566080 + x^12*12427/14968800 -
      x^13*27557/1167566400 + x^14*17/41912640 - x^15/314344800    *)

Array[f, 16]
(*    {1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}    *)