Поток, индуцированный дифференцируемым полем скорости, дифференцируем.

Aug 16 2020

Позволять $E$ быть $\mathbb R$-Банаховое пространство, $\tau>0$ а также $v:[0,\tau]\times E\to E$ такой, что$^1$ $$x\mapsto t\mapsto v(t,x)\tag1$$ принадлежит $C^{0,\:1}(E,C^0([0,\tau],E))$. Этого достаточно, чтобы гарантировать наличие уникального$X^x\in C^0([0,\tau],E)$ с участием $$X^x(t)=x+\int_0^tv(s,X^x(s))\:{\rm d}s\;\;\;\text{for all }t\in[0,\tau]\tag2$$ для всех $x\in E$. Теперь предположим$$v(t,\;\cdot\;)\in C^1(E,E)\;\;\;\text{for all }t\in[0,\tau]\tag3$$ а также ${\rm D}_2v$является (совместно) непрерывным. Опять же, этого достаточно, чтобы убедиться, что существует уникальный$Y^x\in C^0([0,\tau],\mathfrak L(E))$ с участием $$Y^x(t)=\operatorname{id}_E+\int_0^tw_x(s,Y^x(s))\:{\rm d}s\;\;\;\text{for all }t\in[0,\tau],$$ где$^2$ $$w_x(t,A):={\rm D}_2v(t,X^x(t))A\;\;\;\text{for }(t,A)\in[0,\tau]\times\mathfrak L(E),$$ для всех $x\in E$.

Я хотел бы показать это $$E\to C^0([0,\tau],E)\;,\;\;\;x\mapsto X^x$$ дифференцируема по Фреше и производная в точке $x$ дан кем-то $Y^x$ для всех $x\in E$.

Я могу показать это утверждение только при условии, что $v(t,\;\cdot\;)\in C^2([0,\tau],E)$ а также ${\rm D}_2^2v$ также (совместно) непрерывно, поскольку тогда применима теорема Тейлора.

Для общего случая: пусть $x,h\in E$и \ begin {уравнение} \ begin {split} Z (t) &: = X ^ {x + h} (t) -X ^ x (t) -Y ^ x (t) h \\ & = \ int_0 ^ tv \ left (s, X ^ {x + h} (s) \ right) -v \ left (s, X ^ x (s) \ right) - {\ rm D} _2v \ left (s, X ^ x (s) \ right) Y ^ x (s) h \: {\ rm d} s \ end {split} \ tag5 \ end {уравнение} для$t\in[0,\tau]$. Мы можем написать \ begin {уравнение} \ begin {split} & v \ left (s, X ^ {x + h} (s) \ right) -v \ left (s, X ^ x (s) \ right) - { \ rm D} _2v \ left (s, X ^ x (s) \ right) Y ^ x (s) h \\ & \; \; \; \; \; \; \; \; = v \ left ( s, X ^ {x + h} (s) \ right) -v \ left (s, X ^ x (s) \ right) \\ & \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; - {\ rm D} _2v \ left (s, X ^ x (s) \ right) \ left (X ^ {x + h} (s) -X ^ x (s) \ right) \\ & \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; + {\ rm D } _2v \ left (s, X ^ x (s) \ right) Z (s) \ end {split} \ tag6 \ end {уравнение} для всех$s\in[0,\tau]$. Позволять$$c_x:=\sup_{t\in[0,\:\tau]}\left\|{\rm D}_2v\left(X^x(t)\right)\right\|_{\mathfrak L(E)}<\infty\tag7$$ а также $c_1$ обозначим константу Липшица $v$. Затем \ begin {уравнение} \ begin {split} \ sup_ {s \ in [0, \: t]} \ left \ | \ left (X ^ {x + h} -X ^ x \ right) '(s ) \ right \ | _E & = \ sup_ {s \ in [0, \: t]} \ left \ | v \ left (s, X ^ {x + h} (s) \ right) -v \ left (s , X ^ x (s) \ right) \ right \ | _E \\ & \ le c_1 \ sup_ {s \ in [0, \: t]} \ left \ | \ left (X ^ {x + h} - X ^ x \ right) (s) \ right \ | _E \ le c_1e ^ {c_1t} \ left \ | h \ right \ | _E \ end {split} \ tag8 \ end {уравнение} для всех$t\in[0,\tau]$. Теперь проблема состоит в том, чтобы найти подходящую границу для$v\left(s,X^{x+h}(s)\right)-v\left(s,X^x(s)\right)-{\rm D}_2v\left(s,X^x(s)\right)Y^x(s)h$. Очевидно, \ begin {уравнение} \ begin {split} & \ sup_ {s \ in [0, \: t]} \ left \ | v \ left (s, X ^ {x + h} (s) \ right) -v \ left (s, X ^ x (s) \ right) - {\ rm D} _2v \ left (s, X ^ x (s) \ right) Y ^ x (s) h \ right \ | _E \ \ & \; \; \; \; \; \; \; \; \ le \ max (c, c_1) e ^ {c_1t} \ left \ | h \ right \ | _E + c \ sup_ {s \ in [0, \: t]} \ left \ | Z (s) \ right \ | _E \ end {split} \ tag9 \ end {уравнение} для всех$t\in[0,\tau]$.

Общая рекомендация теперь состоит в том, чтобы ссылаться на неравенство Гронволла. Но оценка$(9)$ слишком слаба, чтобы из нее сделать вывод о дифференцируемости по Фреше, поскольку в правой части нам нужно было бы иметь $\left\|h\right\|_E^2$ вместо $\left\|h\right\|_E$ (что имеет место по теореме Тейлора, если мы предположим вышеупомянутую двукратную дифференцируемость).

Можем ли мы что-нибудь сделать, чтобы решить эту проблему?


$^1$ Так, $v$ липшицево по второму аргументу равномерно по первому, имеет не более чем линейный рост по второму аргументу равномерно по первому и (совместно) непрерывно.

$^2$ Для каждого $x\in E$, $w_x$ обладает такими же липшицевостью и свойствами линейного роста, что и $v$.

Ответы

0xbadf00d Aug 19 2020 at 02:49

Позволять $$\left\|f\right\|_t^\ast:=\sup_{s\in[0,\:t]}\left\|f(s)\right\|_E\;\;\;\text{for }f:[0,\tau]\to E\text{ and }t\in[0,\tau],$$ $c_1\ge0$ с участием $$\left\|v(\;\cdot\;,x)-v(\;\cdot\;,y)\right\|_\tau^\ast\le c_1\left\|x-y\right\|_E\tag{10}$$ а также $$T_t(x):=X^x(t)\;\;\;\text{for }(t,x)\in[0,\tau]\times E.$$

Нам потребуются следующие легко проверяемые результаты:

  1. $T_t$ биективен для всех $t\in[0,\tau]$, $$[0,\tau]\ni t\mapsto T_t^{-1}(x)\tag{11}$$ непрерывно для всех $x\in E$ а также $$\sup_{t\in[0,\:\tau]}\left\|T_t^{-1}(x)-T_t^{-1}(y)\right\|_E\le e^{c_1}\tau\left\|x-y\right\|_E\tag{12}.$$
  2. $$[0,\tau]\times E\ni(t,x)\mapsto T_t(x)\tag{13}$$ является (совместно) непрерывным.
  3. $$\left\|X^x-X^y\right\|_t^\ast\le e^{c_1t}\left\|x-y\right\|_E\;\;\;\text{for all }t\in[0,\tau]\text{ and }x,y\in E\tag{14}.$$

Теперь позвольте $x\in E$. Я утверждаю, что$$\frac{\left\|X^{x+h}-X^x-Y^xh\right\|_\tau^\ast}{\left\|h\right\|_E}\xrightarrow{h\to0}0\tag{15}.$$

Позволять $\varepsilon>0$. С$(13)$ непрерывно, $$K:=\left\{\left(t,X^y(t)\right):(t,y)\in[0,\tau]\times\overline B_\varepsilon(x)\right\}$$компактный. Позволять$$\omega(\delta):=\sup_{\substack{(t,\:y_1),\:(t,\:y_2)\:\in\:K\\\left\|y_1-y_2\right\|_E\:<\:\delta}}\left\|{\rm D}_2v(t,y_1)-{\rm D}_2v(t,y_2)\right\|_{\mathfrak L(E)}\;\;\;\text{for }\delta>0.$$ Обратите внимание, что $\omega$не убывает. С${\rm D}_2v$ непрерывен (совместно), он равномерно непрерывен на $K$ и поэтому $$\omega(\delta)\xrightarrow{\delta\to0+}0\tag{16}.$$ По основной теореме исчисления $$v(t,y_2)-v(t,y_1)=\int_0^1{\rm D}_2v\left(t,y_1+r(y_2-y_1)\right)(y_2-y_1)\:{\rm d}r\tag{17}$$ для всех $t\in[0,\tau]$ а также $y_1,y_2\in E$и, следовательно, \ begin {уравнение} \ begin {split} & \ left \ | v (t, y_2) -v (t, y_1) - {\ rm D} _2v (t, y_1) (y_2-y_1) \ right \ | _E \\ & \; \; \; \; \; \; \; \; \; \; \; \; \ le \ left \ | y_1-y_2 \ right \ | _E \ int_0 ^ 1 \ left \ | {\ rm D} _2v (t, y_1 + r (y_2-y_1)) - {\ rm D} _2v (t, y_1) \ right \ | _ {\ mathfrak L (E)} {\ rm d} r \\ & \; \; \; \; \; \; \; \; \; \; \; \; \ le \ left \ | y_1-y_2 \ right \ | _E \ omega \ left (\ left \ | y_1-y_2 \ right \ | _E \ right) \ end {split} \ tag {18} \ end {уравнение} для всех$t\in[0,\tau]$ а также $y_1,y_2\in E$ с участием $$(t,y_1+r(y_2-y_1))\in K\;\;\;\text{for all }r\in[0,1)\tag{19}.$$ Теперь позвольте $h\in B_\varepsilon(x)\setminus\{0\}$и \ begin {уравнение} \ begin {split} Z (t) &: = X ^ {x + h} (t) -X ^ x (t) -Y ^ x (t) h \\ & = \ int_0 ^ tv \ left (s, X ^ {x + h} (s) \ right) -v \ left (s, X ^ x (s) \ right) - {\ rm D} _2v \ left (s, X ^ x (s) \ right) Y ^ x (s) h \: {\ rm d} s \ end {split} \ tag {20} \ end {уравнение} для$t\in[0,\tau]$. Заметьте, что$^1$ $$\left(t,X^x(t)+r\left(X^{x+h}(t)-X^x(t)\right)\right)\in K\;\;\;\text{for all }t\in[0,\tau]\text{ and }r\in[0,1)\tag{21}$$и, следовательно, \ begin {уравнение} \ begin {split} & \ left \ | v \ left (t, X ^ {x + h} (t) \ right) -v \ left (t, X ^ x (t) \ справа) - {\ rm D} _2v \ left (t, X ^ x (t) \ right) \ left (X ^ {x + h} (t) -X ^ x (t) \ right) \ right \ | _E \\ & \; \; \; \; \; \; \; \; \; \; \; \; \ le \ left \ | X ^ {x + h} (t) -X ^ x (t ) \ right \ | _E \ omega \ left (\ left \ | X ^ {x + h} (t) -X ^ x (t) \ right \ | _E \ right) \\ & \; \; \; \ ; \; \; \; \; \; \; \; \; \ le e ^ {c_1t} \ left \ | h \ right \ | _E \ omega \ left (e ^ {c_1t} \ left \ | h \ right \ | _E \ right) \ end {split} \ tag {24} \ end {формула} по$(18)$ а также $(14)$ для всех $t\in[0,\tau]$. Позволять$$a:=e^{c_1\tau}\omega\left(e^{c_1\tau}\left\|h\right\|_E\right).$$ От $(6)$ а также $(24)$, \ begin {уравнение} \ begin {split} & \ left \ | v \ left (s, X ^ {x + h} (s) \ right) -v \ left (s, X ^ x (s) \ right ) - {\ rm D} _2v \ left (s, X ^ x (s) \ right) Y ^ x (s) h \ right \ | _E \\ & \; \; \; \; \; \; \ ; \; \; \; \; \; e ^ {c_1s} \ left \ | h \ right \ | _E \ omega \ left (e ^ {c_1s} \ left \ | h \ right \ | _E \ right) + c_x \ left \ | Z \ right \ | _s ^ \ ast \ le a \ left \ | h \ right \ | _E + c_x + \ left \ | Z \ right \ | _s ^ \ ast \ end {split} \ tag { 25} \ end {формула} для всех$s\in[0,\tau]$и, следовательно, \ begin {уравнение} \ begin {split} \ left \ | Z \ right \ | _t ^ \ ast & \ le \ int_0t ^ t \ left \ | v \ left (s, X ^ {x + h} (s ) \ right) -v \ left (s, X ^ x (s) \ right) - {\ rm D} _2v \ left (s, X ^ x (s) \ right) Y ^ x (s) h \ right \ | _E {\ rm d} s \\ & \ le a \ left \ | h \ right \ | _Et + c_x \ int_0 ^ t \ left \ | Z \ right \ | _s ^ \ ast {\ rm d} s \ end {split} \ tag {26} \ end {формула} для всех$t\in[0,\tau]$. Таким образом, по неравенству Гронуолла$$\left\|Z\right\|_t^\ast\le a\left\|h\right\|_Ete^{c_xt}\;\;\;\text{for all }t\in[0,\tau]\tag{27}$$ и поэтому $$\frac{\left\|Z\right\|_\tau^\ast}{\left\|h\right\|_E}\le a\tau e^{c_x\tau}\xrightarrow{h\to0}0\tag{28}.$$

Это завершает доказательство, и мы показали, что отображение $$E\to C^0([0,\tau],E)\;,\;\;\;x\mapsto X^x$$ дифференцируема по Фреше в точке $x$ с производной равной $Y^x$ для всех $x\in E$.


$^1$ Позволять $t\in[0,\tau]$, $r\in[0,1)$, $$z:=(1-r)X^x(t)+rX^{x+h}(t)$$ а также $$y:=T_t^{-1}(z).$$ По конструкции $$X^y(t)=z\tag{22}$$ и поэтому $$(t,z)\in K\Leftrightarrow y\in\overline B_\varepsilon(x).$$ От $(12)$ а также $(14)$, $$\left\|x-y\right\|_E=\left\|T_t^{-1}(T_t(x))-T_t^{-1}(z)\right\|_E\le e^{c_1t}\left\|T_t(x)-z\right\|_E\le e^{2c_1t}\left\|h\right\|_E\tag{23}.$$ С $\left\|h\right\|_E<\varepsilon$ а также $e^{2c_1t}\le 1$, мы получаем $\left\|x-y\right\|_E<\varepsilon$ и поэтому $y\in\overline B_\varepsilon(x)$.