Aclaración de la solución de suma

Aug 18 2020

Estaba leyendo una solución para un problema y decía esto: $$\sum_{a_1 = 0}^\infty \sum_{a_2 = 0}^\infty \dotsb \sum_{a_7 = 0}^\infty \left( \frac{a_1}{3^{a_1 + a_2 + \dots + a_7}} + \frac{a_2}{3^{a_1 + a_2 + \dots + a_7}} + \dots + \frac{a_7}{3^{a_1 + a_2 + \dots + a_7}} \right) = 7 \sum_{a_1 = 0}^\infty \sum_{a_2 = 0}^\infty \dotsb \sum_{a_7 = 0}^\infty \frac{a_1}{3^{a_1 + a_2 + \dots + a_7}}.$$Tengo un indicio de por qué esto es cierto, probablemente más una intuición para ser honesto, pero no lo entiendo completamente. ¿Alguien puede aclarar? Gracias por adelantado.

Respuestas

1 MarkusScheuer Aug 20 2020 at 02:31

Para ver qué está pasando basta con considerar las series dobles. Suponiendo que las series son absolutamente convergentes, obtenemos

\begin{align*} \color{blue}{\sum_{a_1=0}^{\infty}}\color{blue}{\sum_{a_2=0}^{\infty}\frac{a_1+a_2}{3^{a_1+a_2}}} &=\sum_{a_1=0}^{\infty}\sum_{a_2=0}^{\infty}\frac{a_1}{3^{a_1+a_2}}+\sum_{a_1=0}^{\infty}\sum_{a_2=0}^{\infty}\frac{a_2}{3^{a_1+a_2}}\\ &=\sum_{a_1=0}^{\infty}\sum_{a_2=0}^{\infty}\frac{a_1}{3^{a_1+a_2}}+\sum_{a_2=0}^{\infty}\sum_{a_1=0}^{\infty}\frac{a_1}{3^{a_2+a_1}}\tag{1}\\ &=\sum_{a_1=0}^{\infty}\sum_{a_2=0}^{\infty}\frac{a_1}{3^{a_1+a_2}}+\sum_{a_1=0}^{\infty}\sum_{a_2=0}^{\infty}\frac{a_1}{3^{a_1+a_2}}\tag{2}\\ &\,\,\color{blue}{=2\sum_{a_1=0}^{\infty}\sum_{a_2=0}^{\infty}\frac{a_1}{3^{a_1+a_2}}} \end{align*}

Comentario:

  • En (1) cambiamos el nombre en la serie doble más a la derecha $a_1$ con $a_2$ y $a_2$ con $a_1$.

  • En (2) lo reordenamos.