기본 지수 불변

Aug 19 2020

거듭 제곱의 합은 각 밑과 지수가 전환 되어도 값이 변하지 않는 경우 기본 지수 불변 이라고합니다 . 가장 간단한 예는$2^4$, 물론 다음과 같습니다. $4^2$. 또 다른 기본 지수 불변은

$$2^{5} + 2^{7} + 2^{9} + 5^{3} + 5^{4}=5^{2} + 7^{2} + 9^{2} + 3^{5} + 4^{5}$$

다른 많은 예가 있습니다. $5$알려진 summands. (https://erich-friedman.github.io/mathmagic/0608.html.)

우리는 모든 밑과 지수가 적어도 정수인 밑 지수 불변에 관심이 있습니다. $2$, 밑수와 지수가 바뀐 후에도 거듭 제곱이 나타나지 않는 경우. 합계가 있습니까$2$, $3$, 또는 $4$ 기본 지수 불변의 거듭 제곱?

또한 기수와 지수가 바뀐 경우에도 여전히 참으로 남아있는 변수를 포함하는 일반적인 거듭 제곱 합계 표현에 관심이있어 주어진 길이의 예가 무한히 많습니다. Dean Hickerson은이 표현이$20$ 작동하는 힘 :

$$ 2^{2n} + 2^{2n+8}+ 2^{2n+16} + 2^{2n+32} + 2^{2n+34} + 4^{n+1} + 4^{n+2} + 4^{n+10} + 4^{n+14} + 4^{n+18} + n^{4} + (n+4)^{4} + (n+8)^{4} + (n+16)^{4} + (n+17)^{4} + (2n+2)^{2} + (2n+4)^{2} + (2n+20)^{2} + (2n+28)^{2} + (2n+36)^{2} $$

다음보다 적은 수를 포함하는 표현이 있습니까? $20$ 힘?

답변

3 Vepir Sep 07 2020 at 00:36

이것은 부분적인 대답입니다 .

광범위한 계산을 기반으로 정의를 제안하고 추측을 제시합니다.


다음 정의를 제안하고 싶습니다.

$n\in\mathbb N$기본 지수 불변 합계 = SPIN (Strongly Power Invariant Number) 입니다. 고유 한 비 불변 완전 거듭 제곱의 지수 불변 합계 인 경우 :

$$ n=\sum_{i=1}^{k} a_{i}^{b_{i}}=\sum_{i=1}^{k} b_{i}^{a_{i}}, \quad a_{i}>1, b_{i}>1, \quad a_{i}^{b_{i}} \neq b_{i}^{a_{i}}, \quad\left(i \neq j \Longrightarrow\left\{a_{i}, b_{i}\right\} \neq\left\{a_{j}, b_{j}\right\}\right) $$

예를 들어, 가장 작은 SPIN은 $k=6$ 합계와 같음의 용어 :

$$\begin{align} 432 &= 3^{2}+5^{2}+2^{6}+3^{4}+5^{3}+2^{7} \\&= 2^{3}+2^{5}+6^{2}+4^{3}+3^{5}+7^{2}. \end{align}$$

일부 숫자 $n$하나 이상의 합계에 해당합니다. 예를 들면 :

$$ \begin{align} 1554&=3^{2}+7^{2}+6^{3}+2^{8}+4^{5} \\ &=2^{3}+2^{7}+3^{6}+8^{2}+5^{4}, \\ 1554&=3^{2}+5^{2}+2^{6}+10^{2}+2^{7}+3^{5}+2^{8}+3^{6}\\ &=2^{3}+2^{5}+6^{2}+2^{10}+7^{2}+5^{3}+8^{2}+6^{3}. \end{align} $$

$1554$ 1과 같다 $5$-기간 합계 및 1 $8$-학기 합계.

까지 $n\le 10^4$, 있습니다 $887$ SPIN (중복 계산), https://pastebin.com/5ArkFif4.

그러나 우리는 $k$ -용어 (합계)의 수가 적습니다.



$(k\le 5)$ 용어 스핀

까지 $n\le 10^{20}$, 거기 엔 오직 $14$ 스핀 $5$ 또는 더 적은 용어, 그들은 모두 $5$ 자귀:

$$\begin{array}{} 1422 &= 5^{2} + 7^{2} + 9^{2} + 3^{5} + 4^{5} &= 2^{5} + 2^{7} + 2^{9} + 5^{3} + 5^{4} \\ 1464 &= 5^{2} + 6^{2} + 7^{2} + 5^{4} + 3^{6} &= 2^{5} + 2^{6} + 2^{7} + 4^{5} + 6^{3} \\ 1554 &= 2^{3} + 8^{2} + 2^{7} + 5^{4} + 3^{6} &= 3^{2} + 2^{8} + 7^{2} + 4^{5} + 6^{3} \\ 2612 &= 5^{2} + 6^{2} + 11^{2} + 3^{5} + 3^{7} &= 2^{5} + 2^{6} + 2^{11} + 5^{3} + 7^{3} \\ 3127 &= 2^{3} + 6^{3} + 7^{3} + 2^{9} + 2^{11} &= 3^{2} + 3^{6} + 3^{7} + 9^{2} + 11^{2} \\ 4481 &= 6^{2} + 10^{2} + 11^{2} + 2^{7} + 4^{6} &= 2^{6} + 2^{10} + 2^{11} + 7^{2} + 6^{4} \\ 5644 &= 9^{2} + 10^{2} + 7^{3} + 4^{5} + 4^{6} &= 2^{9} + 2^{10} + 3^{7} + 5^{4} + 6^{4} \\ 16122 &= 2^{3} + 4^{3} + 13^{2} + 2^{8} + 5^{6} &= 3^{2} + 3^{4} + 2^{13} + 8^{2} + 6^{5} \\ 68521 &= 8^{2} + 5^{4} + 10^{3} + 6^{4} + 4^{8} &= 2^{8} + 4^{5} + 3^{10} + 4^{6} + 8^{4} \\ 77129 &= 12^{2} + 16^{2} + 6^{4} + 4^{7} + 3^{10} &= 2^{12} + 2^{16} + 4^{6} + 7^{4} + 10^{3} \\ 82583 &= 5^{2} + 3^{4} + 16^{2} + 2^{12} + 5^{7} &= 2^{5} + 4^{3} + 2^{16} + 12^{2} + 7^{5} \\ 1065585 &= 9^{2} + 12^{2} + 20^{2} + 4^{7} + 4^{10} &= 2^{9} + 2^{12} + 2^{20} + 7^{4} + 10^{4} \\ 4227140 &= 13^{2} + 7^{4} + 11^{4} + 5^{6} + 2^{22} &= 2^{13} + 4^{7} + 4^{11} + 6^{5} + 22^{2} \\ 6164560 &= 18^{2} + 7^{5} + 5^{9} + 2^{21} + 8^{7} &= 2^{18} + 5^{7} + 9^{5} + 21^{2} + 7^{8} \end{array}$$

가장 큰 것이 더 작은 곳 $10^7 \ll 10^{20}$.

추측 : 다음보다 적은 SPIN은 없습니다.$5$ 자귀.

추측 : 정확히$14$ 정확히 $5$ 자귀.

이것은 증명하기 어려울 것입니다.

예 : 비슷한 문제 $k=2$ 에 의해 연결되었다 https://math.stackexchange.com/q/3795656/318073#comment7868924_3795656; 아직 열려 있습니다.https://math.stackexchange.com/q/3286093/318073. 그건,$k=2$ 연결된 문제와 동일하지만 $a^b-b^a$ 대신 :

$$ a^b+c^d=b^a+d^c \iff a^b-b^a = d^c - c^d. $$



$(k\ge 6)$ 용어 스핀

추측 : 고정 된 경우$k\ge 6$, 무한히 많은 $k$-용어 스핀.

즉, 알려진 $20$-학기 가족 :

$$ n(t) = 2^{2t} + 2^{2t+8}+ 2^{2t+16} + 2^{2t+32} + 2^{2t+34} + 4^{t+1} + 4^{t+2} + 4^{t+10} + 4^{t+14} + 4^{t+18} + t^{4} + (t+4)^{4} + (t+8)^{4} + (t+16)^{4} + (t+17)^{4} + (2t+2)^{2} + (2t+4)^{2} + (2t+20)^{2} + (2t+28)^{2} + (2t+36)^{2} $$

제공 $20$-모든 기간 스핀 $t\gt 4$, 그러나 나는 $6$-임기 가족 $n(t_1,t_2,\dots)$ 존재합니다.

그러나 이것은 또한 아마도 보여주기 어려울 것입니다.

그런 가족을 찾으려는 시도에서 나는 "특별한 종류"의 $k=6$ 예.



$(k = 6)$ 특별한 종류의 용어 SPIN

까지 $n\le 10^{10}$, 있습니다 $101$ 스핀 $6$ 자귀; https://htmlpreview.github.io/?https://github.com/virv/SPIN/blob/master/SPINs.html.

실제로 매우 큰 예제를 찾을 수 있습니다. $k=6$. 예를 들면

$$ n^* = 2^5 + 11^2 + 2^{28} + 52^2 + 8192^4 + 2^{16384} = 5^2 + 2^{11} + 28^2 + 2^{52} + 4^{8192} + 16384^2 $$

있다 $4933$ 십진수 (보다 큼 $n^*\gt 10^{4932}$).

이것은 "특별한 종류"를 검색하여 찾을 수있었습니다. $6$-용어 스핀 :

$$ n^{*}=\sum_{i=1}^4a_i^{b_i} + x^4 + 2^{2x} =\sum_{i=1}^4b_i^{a_i} + 4^x + (2x)^2 $$

왜냐하면 $|(4^x-x^4) - ((2x)^2-2^{2x})|$이다 "아주 작은" . 그건,

내가 검색 할 때 $k=2$ 예를 들어, "오류"를 최소화하려고했습니다.

$$|(a_1^{b_1}-b_1^{a_1})-(a_2^{b_2}-b_2^{a_2})|$$

고정 된 첫 학기 $i=1$ 가장 가까운 작은 2 항 찾기 $i=2$.

첫 번째에 대한 "오류"의 로그 플롯에서 $1000$ 자귀 $(a_i^{b_i}-b_i^{a_i})$ 우리는 찾는다:

$\{a_1,b_1\}=\{4,x\}$$\{a_2,b_2\}=\{2x,2\}$ 가장 작은 "오류"가 있습니다. 즉, 내가 녹색으로 칠해진 x 축에 가장 가까운 점의 호 ( "오류")를 관찰합니다.

이러한 오류는 때때로 다음과 같이 줄일 수 있습니다. $0$ 추가하여 $4$ 추가 용어, $6$-이 "특별한 종류"의 용어 예 $n^{*}$.

까지 $n^{*}\le 10^{20}$, 있습니다 $41$ 이 "특별한 종류"의 $6$-용어 스핀 :

$$\begin{align} 3^{2} + 5^{2} + 2^{7} + 5^{3} + 3^{4} + 2^{6} &=& 2^{3} + 2^{5} + 7^{2} + 3^{5} + 4^{3} + 6^{2} \\ 2^{5} + 3^{4} + 5^{3} + 9^{2} + 5^{4} + 2^{10} &=& 5^{2} + 4^{3} + 3^{5} + 2^{9} + 4^{5} + 10^{2} \\ 2^{3} + 3^{4} + 6^{2} + 6^{3} + 5^{4} + 2^{10} &=& 3^{2} + 4^{3} + 2^{6} + 3^{6} + 4^{5} + 10^{2} \\ 2^{3} + 7^{3} + 8^{3} + 5^{6} + 3^{4} + 2^{6} &=& 3^{2} + 3^{7} + 3^{8} + 6^{5} + 4^{3} + 6^{2} \\ 5^{2} + 7^{2} + 8^{2} + 11^{2} + 7^{4} + 2^{14} &=& 2^{5} + 2^{7} + 2^{8} + 2^{11} + 4^{7} + 14^{2} \\ 7^{2} + 4^{6} + 2^{14} + 9^{3} + 3^{4} + 2^{6} &=& 2^{7} + 6^{4} + 14^{2} + 3^{9} + 4^{3} + 6^{2} \\ 6^{2} + 2^{8} + 2^{9} + 6^{4} + 7^{4} + 2^{14} &=& 2^{6} + 8^{2} + 9^{2} + 4^{6} + 4^{7} + 14^{2} \\ 3^{7} + 6^{5} + 13^{2} + 4^{7} + 3^{4} + 2^{6} &=& 7^{3} + 5^{6} + 2^{13} + 7^{4} + 4^{3} + 6^{2} \\ 2^{3} + 7^{2} + 2^{8} + 12^{2} + 8^{4} + 2^{16} &=& 3^{2} + 2^{7} + 8^{2} + 2^{12} + 4^{8} + 16^{2} \\ 3^{2} + 5^{2} + 3^{5} + 12^{2} + 8^{4} + 2^{16} &=& 2^{3} + 2^{5} + 5^{3} + 2^{12} + 4^{8} + 16^{2} \\ 8^{2} + 5^{4} + 4^{6} + 8^{3} + 8^{4} + 2^{16} &=& 2^{8} + 4^{5} + 6^{4} + 3^{8} + 4^{8} + 16^{2} \\ 2^{6} + 9^{2} + 5^{7} + 8^{4} + 5^{4} + 2^{10} &=& 6^{2} + 2^{9} + 7^{5} + 4^{8} + 4^{5} + 10^{2} \\ 5^{3} + 8^{3} + 7^{5} + 2^{16} + 7^{4} + 2^{14} &=& 3^{5} + 3^{8} + 5^{7} + 16^{2} + 4^{7} + 14^{2} \\ 3^{2} + 2^{11} + 2^{13} + 14^{2} + 9^{4} + 2^{18} &=& 2^{3} + 11^{2} + 13^{2} + 2^{14} + 4^{9} + 18^{2} \\ 9^{2} + 7^{3} + 5^{7} + 16^{2} + 9^{4} + 2^{18} &=& 2^{9} + 3^{7} + 7^{5} + 2^{16} + 4^{9} + 18^{2} \\ 6^{3} + 3^{7} + 2^{13} + 9^{3} + 10^{4} + 2^{20} &=& 3^{6} + 7^{3} + 13^{2} + 3^{9} + 4^{10} + 20^{2} \\ 2^{9} + 6^{4} + 3^{10} + 16^{2} + 10^{4} + 2^{20} &=& 9^{2} + 4^{6} + 10^{3} + 2^{16} + 4^{10} + 20^{2} \\ 3^{2} + 3^{4} + 8^{2} + 7^{4} + 11^{4} + 2^{22} &=& 2^{3} + 4^{3} + 2^{8} + 4^{7} + 4^{11} + 22^{2} \\ 7^{2} + 2^{10} + 2^{12} + 9^{3} + 11^{4} + 2^{22} &=& 2^{7} + 10^{2} + 12^{2} + 3^{9} + 4^{11} + 22^{2} \\ 11^{2} + 12^{2} + 13^{2} + 7^{4} + 13^{4} + 2^{26} &=& 2^{11} + 2^{12} + 2^{13} + 4^{7} + 4^{13} + 26^{2} \\ 5^{2} + 4^{7} + 2^{14} + 10^{3} + 13^{4} + 2^{26} &=& 2^{5} + 7^{4} + 14^{2} + 3^{10} + 4^{13} + 26^{2} \\ 5^{3} + 4^{7} + 9^{3} + 15^{2} + 14^{4} + 2^{28} &=& 3^{5} + 7^{4} + 3^{9} + 2^{15} + 4^{14} + 28^{2} \\ 7^{2} + 8^{3} + 2^{17} + 7^{6} + 14^{4} + 2^{28} &=& 2^{7} + 3^{8} + 17^{2} + 6^{7} + 4^{14} + 28^{2} \\ 2^{9} + 3^{7} + 3^{8} + 10^{3} + 15^{4} + 2^{30} &=& 9^{2} + 7^{3} + 8^{3} + 3^{10} + 4^{15} + 30^{2} \\ 5^{4} + 6^{4} + 7^{4} + 15^{2} + 15^{4} + 2^{30} &=& 4^{5} + 4^{6} + 4^{7} + 2^{15} + 4^{15} + 30^{2} \\ 3^{4} + 9^{2} + 8^{3} + 10^{3} + 16^{4} + 2^{32} &=& 4^{3} + 2^{9} + 3^{8} + 3^{10} + 4^{16} + 32^{2} \\ 13^{2} + 3^{9} + 6^{7} + 9^{4} + 17^{4} + 2^{34} &=& 2^{13} + 9^{3} + 7^{6} + 4^{9} + 4^{17} + 34^{2} \\ 2^{8} + 8^{3} + 15^{2} + 16^{2} + 18^{4} + 2^{36} &=& 8^{2} + 3^{8} + 2^{15} + 2^{16} + 4^{18} + 36^{2} \\ 2^{5} + 6^{2} + 2^{11} + 17^{2} + 19^{4} + 2^{38} &=& 5^{2} + 2^{6} + 11^{2} + 2^{17} + 4^{19} + 38^{2} \\ 4^{3} + 2^{7} + 3^{7} + 17^{2} + 19^{4} + 2^{38} &=& 3^{4} + 7^{2} + 7^{3} + 2^{17} + 4^{19} + 38^{2} \\ 5^{6} + 5^{7} + 16^{2} + 7^{6} + 20^{4} + 2^{40} &=& 6^{5} + 7^{5} + 2^{16} + 6^{7} + 4^{20} + 40^{2} \\ 5^{3} + 6^{4} + 7^{4} + 11^{3} + 21^{4} + 2^{42} &=& 3^{5} + 4^{6} + 4^{7} + 3^{11} + 4^{21} + 42^{2} \\ 2^{9} + 3^{7} + 15^{2} + 8^{5} + 25^{4} + 2^{50} &=& 9^{2} + 7^{3} + 2^{15} + 5^{8} + 4^{25} + 50^{2} \\ 2^{8} + 2^{13} + 4^{8} + 19^{2} + 26^{4} + 2^{52} &=& 8^{2} + 13^{2} + 8^{4} + 2^{19} + 4^{26} + 52^{2} \\ 2^{17} + 9^{4} + 4^{24} + 48^{2} + 26^{4} + 2^{52} &=& 17^{2} + 4^{9} + 24^{4} + 2^{48} + 4^{26} + 52^{2} \\ 17^{2} + 4^{9} + 4^{26} + 52^{2} + 24^{4} + 2^{48} &=& 2^{17} + 9^{4} + 26^{4} + 2^{52} + 4^{24} + 48^{2} \\ 5^{2} + 2^{11} + 9^{4} + 8^{5} + 28^{4} + 2^{56} &=& 2^{5} + 11^{2} + 4^{9} + 5^{8} + 4^{28} + 56^{2} \\ 2^{7} + 10^{3} + 4^{10} + 13^{3} + 28^{4} + 2^{56} &=& 7^{2} + 3^{10} + 10^{4} + 3^{13} + 4^{28} + 56^{2} \\ 2^{8} + 2^{11} + 13^{2} + 10^{4} + 32^{4} + 2^{64} &=& 8^{2} + 11^{2} + 2^{13} + 4^{10} + 4^{32} + 64^{2} \\ 6^{2} + 2^{10} + 4^{6} + 20^{2} + 32^{4} + 2^{64} &=& 2^{6} + 10^{2} + 6^{4} + 2^{20} + 4^{32} + 64^{2} \\ 5^{3} + 2^{19} + 12^{3} + 10^{4} + 32^{4} + 2^{64} &=& 3^{5} + 19^{2} + 3^{12} + 4^{10} + 4^{32} + 64^{2} \\ \end{align}$$

이러한 "특별한 종류"의 예는 무한히 많은 것 같습니다.

또한 무한히 더 많은 것 같습니다 $6$-term SPIN ( "특별한 종류"가 아님).

그러나 이것은 아마도 증명하기 어려울 것입니다.

녹색 호 위의 "두 번째로 좋은 호"등을 고려하여 많은 예제를 생성 할 수도 있습니다. 또한, 우리는 더 큰 오류에 대해 가장 작은 오류를 관찰 할 수 있습니다.$k\gt 2$, 더 많은 예제와 $k\gt 6$.

이 아니라면 $k\le 5$, 큰 예제가 존재하기에는 오류가 너무 큰 것 같습니다.