곱슬 곱슬 한 [중복]으로 변수 변경
나는와 곱슬 곱슬 사용했습니다 group_by
과 summarise
로는 설명 rlang 발표 . 그러나 변수를 제자리에서 변경할 때 작동하지 않습니다. 현재 dplyr로이를 수행하는 가장 좋은 방법은 무엇입니까?
인용되지 않은 열 이름을 제공하고 변경하고 싶다면 작동하지 않는 장난감 예제 함수가 있습니다.
my_fun <- function(dat, var_name){
dat %>%
mutate({{var_name}} = 1)
}
my_fun(mtcars, cyl)
mutate
mtcars의 열을 상수로 변경하려면 그 라인 은 무엇입니까 ?
답변
3 AllanCameron
에서 할당 :=
의 왼쪽에 이름을 지정하기 위해 곱슬 곱슬 을 사용하려면 할당 연산자 ( )를 사용해야합니다 mutate
.
my_fun <- function(dat, var_name){
dat %>%
mutate({{var_name}} := 1)
}
다음을 허용합니다.
my_fun(mtcars, cyl)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 21.0 1 160.0 110 3.90 2.620 16.46 0 1 4 4
#> 2 21.0 1 160.0 110 3.90 2.875 17.02 0 1 4 4
#> 3 22.8 1 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 4 21.4 1 258.0 110 3.08 3.215 19.44 1 0 3 1
#> 5 18.7 1 360.0 175 3.15 3.440 17.02 0 0 3 2
#> 6 18.1 1 225.0 105 2.76 3.460 20.22 1 0 3 1
#> 7 14.3 1 360.0 245 3.21 3.570 15.84 0 0 3 4
#> 8 24.4 1 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 9 22.8 1 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 10 19.2 1 167.6 123 3.92 3.440 18.30 1 0 4 4
#> 11 17.8 1 167.6 123 3.92 3.440 18.90 1 0 4 4
#> 12 16.4 1 275.8 180 3.07 4.070 17.40 0 0 3 3
#> 13 17.3 1 275.8 180 3.07 3.730 17.60 0 0 3 3
#> 14 15.2 1 275.8 180 3.07 3.780 18.00 0 0 3 3
#> 15 10.4 1 472.0 205 2.93 5.250 17.98 0 0 3 4
#> 16 10.4 1 460.0 215 3.00 5.424 17.82 0 0 3 4
#> 17 14.7 1 440.0 230 3.23 5.345 17.42 0 0 3 4
#> 18 32.4 1 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 19 30.4 1 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 20 33.9 1 71.1 65 4.22 1.835 19.90 1 1 4 1
#> 21 21.5 1 120.1 97 3.70 2.465 20.01 1 0 3 1
#> 22 15.5 1 318.0 150 2.76 3.520 16.87 0 0 3 2
#> 23 15.2 1 304.0 150 3.15 3.435 17.30 0 0 3 2
#> 24 13.3 1 350.0 245 3.73 3.840 15.41 0 0 3 4
#> 25 19.2 1 400.0 175 3.08 3.845 17.05 0 0 3 2
#> 26 27.3 1 79.0 66 4.08 1.935 18.90 1 1 4 1
#> 27 26.0 1 120.3 91 4.43 2.140 16.70 0 1 5 2
#> 28 30.4 1 95.1 113 3.77 1.513 16.90 1 1 5 2
#> 29 15.8 1 351.0 264 4.22 3.170 14.50 0 1 5 4
#> 30 19.7 1 145.0 175 3.62 2.770 15.50 0 1 5 6
#> 31 15.0 1 301.0 335 3.54 3.570 14.60 0 1 5 8
#> 32 21.4 1 121.0 109 4.11 2.780 18.60 1 1 4 2