Является $\sigma(n)$ инъективный в наборе $A=\left\{n\in\mathbb{N}: \mbox{$п $ is odd and $\ омега (п) = 1 $} \right\}$?
Некоторое время назад я спросил, может ли функция суммы делителей $σ(n)$ был инъективен, на что был дан отрицательный ответ, и мне представили несколько контрпримеров, тогда я начал задаваться вопросом, не ограничивая ли $σ(n)$ к определенному $A\subset\mathbb{N}$, это могло быть инъекционным. Первым, что я нашел, был набор простых чисел, и оттуда я попытался увидеть более общий набор, например,$A=\left\{n\in\mathbb{N}: \mbox{$п$ is odd and $\ омега (п) = 1$} \right\}$ где $\omega(n)$ представляет количество простых делителей, кроме $n$. Таким образом, если я возьму$a,b\in A$ такой, что $a\neq b$, поэтому мы хотим доказать, что $\sigma(a)\neq \sigma(b)$. Обратите внимание, что$a,b\in A$ подразумевает, что $a=p^{\alpha}$ и $b=q^\beta$ с участием $\alpha,\beta\in\mathbb{N}$ и $p,q$нечетные простые числа. Теперь, поскольку$a\neq b$, то без ограничения общности предположим, что $a<b$. У нас есть кейсы:
Случай 1: Если $p=q$, то обязательно $\alpha<\beta$ и $\sigma(a)< \sigma(b)$.
Случай 2: Если $p\neq q$, тогда
Случай 2.1: Если $p<q$ и $\alpha\le\beta$, тогда $\sigma(a)< \sigma(b)$
Случай 2.2: Если $p<q$ и $\beta<\alpha$, тогда $\tau(b)=\beta +1<\tau(a)=\alpha+1$.
И остановитесь, может кто-нибудь подскажет, как продолжить тест? или скажите мне, ложно ли, что сигма не инъективна в A?
Если у меня есть ошибка в тесте, дайте мне знать.
Заметка: $\tau(n)$ представляет собой количество положительных делителей числа $n$.
Заранее спасибо.
Ответы
Думаю, это доказательство, давайте сначала рассмотрим следующее утверждение:
Предложение: $I\left( p^{n}q^{m}\right) <2$ для любого $ p, q $ разные нечетные простые числа и $ n, m $ положительные целые числа.
куда $I$ обозначает индекс численности
Доказательство: обратите внимание, что$p,q$ разные нечетные простые числа, поэтому $(p, q)=1$ подразумевая в свою очередь $\left(p^{n}, q ^{m}\right) = 1 $ для любого $n, m \in\mathbb{N}$и поскольку индекс изобилия мультипликативен, мы имеем \ begin {eqnarray *} I \ left (p ^ {n} q ^ {m} \ right) = I \ left (p ^ {n} \ right) I \ left (q ^ {m} \ right) = \ left (\ cfrac {\ sigma \ left (p ^ {n} \ right)} {p ^ {n}} \ right) \ left (\ cfrac {\ sigma \ left (q ^ {m} \ right)} {q ^ {m}} \ right) \ end {eqnarray *}
Но \ begin {eqnarray *} \ cfrac {\ sigma \ left (p ^ {n} \ right)} {p ^ {n}} & = & \ cfrac {1} {p ^ {n}} + \ cfrac {p} {p ^ {n}} + \ dots + \ cfrac {p ^ {n}} {p ^ {n}} \\ & = & \ cfrac {1} {p ^ {n}} + \ cfrac { 1} {p ^ {n-1}} + \ dots + 1 \\ & = & \ sum_ {k = 0} ^ {n} \ left ({1} / {p} \ right) ^ {k} = \ cfrac {1 - {\ left ({1} / {p} \ right)} ^ {n}} {1 - {\ left ({1} / {p} \ right)}} <\ cfrac {1} {1 - {\ left ({1} / {p} \ right)}} \ end {eqnarray *}
Аналогично для $ q $ мы получаем
\ begin {eqnarray *} \ cfrac {\ sigma \ left (q ^ {m} \ right)} {q ^ {m}} <\ cfrac {1} {1 - {\ left ({1} / {q} \ right)}} \ end {eqnarray *}
С другой стороны, как $ p $ и $ q $ - разные нечетные простые числа, то без ограничения общности можно считать, что $3\le p<q$, это $p\ge3$ и $q\ge5$, отсюда
\ begin {eqnarray *} \ cfrac {1} {1 - {\ left ({1} / {p} \ right)}} \ le \ cfrac {1} {1 - {\ left ({1} / {3 } \ right)}} \ quad и \ quad \ cfrac {1} {1 - {\ left ({1} / {q} \ right)}} \ le \ cfrac {1} {1 - {\ left ({ 1} / {5} \ right)}} \ end {eqnarray *}
Так,
\ begin {eqnarray *} I \ left (p ^ {n} q ^ {m} \ right) = \ left (\ cfrac {\ sigma \ left (p ^ {n} \ right)} {p ^ {n} } \ right) \ left (\ cfrac {\ sigma \ left (q ^ {m} \ right)} {q ^ {m}} \ right) & <& \ left (\ cfrac {1} {1 - {\ left ({1} / {p} \ right)}} \ right) \ left (\ cfrac {1} {1 - {\ left ({1} / {q} \ right)}} \ right) \\ & \ le & \ left (\ cfrac {1} {1 - {\ left ({1} / {3} \ right)}} \ right) \ left (\ cfrac {1} {1 - {\ left ({1} / {5} \ right)}} \ right) = \ cfrac {15} {8} <2 \ end {eqnarray *}
Теперь перейдем к доказательству $σ(n)$ инъективен в множестве $A=\left\lbrace n\in\mathbb{N}:\mbox{$п$ is odd and $\ омега (п) = 1$}\right\rbrace $
Доказательство: дано$a,b∈A$ такой, что $a≠b$, поэтому мы хотим доказать, что $σ(a)≠σ(b)$. Обратите внимание, что$a,b∈A$ подразумевает, что $a=p^α$ и $b=q^β$ с участием $α,β∈N$ и $p,q$нечетные простые числа. Теперь из$a\neq b$ возникают следующие случаи:
Случай 1: Если $p=q$, то обязательно $\alpha\neq\beta$ и $\sigma(a)\neq\sigma(b)$.
Случай 2: Если $p\neq q$, тогда предположим $\sigma(a)=\sigma(b)$, следовательно $I\left( ab\right)=I\left( a\right)I\left( b\right)<2$, где мы берем \ begin {eqnarray *} \ left (\ cfrac {\ sigma \ left (p ^ {\ alpha} \ right)} {p ^ {\ alpha}} \ right) \ left (\ cfrac {\ sigma \ left (q ^ {\ beta} \ right)} {q ^ {\ beta}} \ right) <2 \ end {eqnarray *} или эквивалентно \ begin {eqnarray *} \ sigma \ left (p ^ {\ alpha} \ right) \ sigma \ left (q ^ {\ beta} \ right) <2p ^ {\ alpha} q ^ {\ beta} \ end {eqnarray *} но как$\sigma(a)=\sigma(b)$, затем \ begin {eqnarray *} \ left (\ sigma \ left (p ^ {\ alpha} \ right) \ right) ^ 2 <2p ^ {\ alpha} q ^ {\ beta} \ end {eqnarray *} и последнее верно для любого$ p, q $ разные нечетные простые числа такие, что $\sigma(a)=\sigma(b)$ и $ \alpha, \beta $положительные целые числа. \ end {eqnarray *}
Я ошибся в предыдущем тесте, поэтому редактирую его, благодарю @shibai за то, что обратил на меня внимание. Текущий тест не завершен, но, возможно, является ключом к полному тесту.