¿Hay algo de $1$ a $\sqrt[4]{2}$ utilizando $\sqrt{\alpha^2+ 1}$

Nov 28 2020

El objetivo es salir de $1$ a $\sqrt[4]{2}$ o demostrar que es imposible usando solo una de las siguientes opciones:

  1. Suma o resta dos números construidos previamente.
  2. Multiplica dos números construidos previamente.
  3. Usando un número construido previamente $\alpha$ construir ambas soluciones para $\alpha^2+1=\beta^2$. Me las arreglé para construir muchos números cercanos a él, como$\sqrt{4+2\sqrt{2}}$.
    Estoy bastante seguro de que es imposible, pero no he logrado demostrarlo.
    ¿Puede alguno de ustedes ayudar?
    Edición 1: recíprocos
    Podemos construir todos los radicales cuadráticos y números racionales.
    En este caso, estamos buscando una extensión de$\mathbb Q$ que está cerrado en (3), los números construibles se cierran en esta operación, pero creo que hay un subcampo de los números construibles cerrados debajo de él y que contiene $\mathbb Q$ como subcampo.

Respuestas

1 WillJagy Nov 29 2020 at 02:07

Muy bien, deberías comprobar tu cálculo de nuevo. Si realmente construyeras$2^{1/4}$ inmediatamente podrías construir $\sqrt{1 + \sqrt 2}.$ Esto no es posible: la forma más rápida de decirlo es que el campo de Hilbert es el conjunto de elementos totalmente reales en el campo construible (cerrado bajo raíces cuadradas de elementos positivos).

Estas son las páginas 145-148 de Geometry: Euclid and Beyond por Robin Hartshorne.

Repetí la búsqueda del primer ejemplo en https://doc.sagemath.org/html/en/reference/number_fields/sage/rings/number_field/totallyreal_rel.html

y consiguió

jagy@phobeusjunior:~$ sage
┌────────────────────────────────────────────────────────────────────┐
│ SageMath Version 6.9, Release Date: 2015-10-10                     │
│ Type "notebook()" for the browser-based notebook interface.        │
│ Type "help()" for help.                                            │
└────────────────────────────────────────────────────────────────────┘
sage:  ZZx = ZZ['x']
sage:  F.<t> = NumberField(x^2-2)
sage: enumerate_totallyreal_fields_rel(F, 2, 10000)
[[1600, x^4 - 6*x^2 + 4, xF^2 + (t + 1)*xF + 3*t - 3],
 [2048, x^4 - 4*x^2 + 2, xF^2 + t - 2],
 [2304, x^4 - 4*x^2 + 1, xF^2 + t*xF - 1],
 [2624, x^4 - 2*x^3 - 3*x^2 + 2*x + 1, xF^2 + (t + 1)*xF + t - 1],
 [4352, x^4 - 6*x^2 - 4*x + 2, xF^2 + t*xF + t - 2],
 [7168, x^4 - 6*x^2 + 7, xF^2 + t - 3],
 [7232, x^4 - 2*x^3 - 5*x^2 + 4*x + 4, xF^2 + (t + 1)*xF + t - 2],
 [8768, x^4 - 2*x^3 - 5*x^2 + 6*x + 7, xF^2 + xF + t - 3],
 [9792, x^4 - 2*x^3 - 7*x^2 + 2*x + 7, xF^2 + (t + 1)*xF + 2*t - 3]]



sage: enumerate_totallyreal_fields_rel(F, 2, 100000)
[[1600, x^4 - 6*x^2 + 4, xF^2 + xF - 1],
 [2048, x^4 - 4*x^2 + 2, xF^2 + t - 10],
 [2304, x^4 - 4*x^2 + 1, xF^2 + t*xF - 1],
 [2624, x^4 - 2*x^3 - 3*x^2 + 2*x + 1, xF^2 + (t + 1)*xF + t - 1],
 [4352, x^4 - 6*x^2 - 4*x + 2, xF^2 + t*xF + t - 14],
 [7168, x^4 - 6*x^2 + 7, xF^2 + t - 3],
 [7232, x^4 - 2*x^3 - 5*x^2 + 4*x + 4, xF^2 + (t + 1)*xF + t - 2],
 [8768, x^4 - 2*x^3 - 5*x^2 + 6*x + 7, xF^2 + (t + 1)*xF + 4*t - 5],
 [9792, x^4 - 2*x^3 - 7*x^2 + 2*x + 7, xF^2 + (t + 1)*xF + 2*t - 3],
 [10304, x^4 - 2*x^3 - 7*x^2 + 8*x + 8, xF^2 + (t + 1)*xF + 3*t - 4],
 [10816, x^4 - 2*x^3 - 9*x^2 + 10*x - 1, xF^2 + (t + 1)*xF + 7*t - 9],
 [12544, x^4 - 8*x^2 + 9, xF^2 + t*xF - 3],
 [13888, x^4 - 2*x^3 - 7*x^2 + 6*x + 9, xF^2 + (t + 1)*xF + t - 3],
 [14336, x^4 - 8*x^2 + 14, xF^2 + t - 4],
 [16448, x^4 - 2*x^3 - 7*x^2 + 8*x + 14, xF^2 + (t + 1)*xF + 6*t - 8],
 [18432, x^4 - 12*x^2 + 18, xF^2 + 3*t - 6],
 [18496, x^4 - 2*x^3 - 11*x^2 + 12*x + 2, xF^2 + xF - 4],
 [18688, x^4 - 10*x^2 - 4*x + 14, xF^2 + t*xF + t - 4],
 [20032, x^4 - 2*x^3 - 9*x^2 + 10*x + 17, xF^2 + (t + 1)*xF + 5*t - 7],
 [21056, x^4 - 2*x^3 - 11*x^2 + 2*x + 17, xF^2 + (t + 1)*xF + 3*t - 5],
 [21568, x^4 - 2*x^3 - 11*x^2 + 12*x + 18, xF^2 + (t + 1)*xF + 4*t - 6],
 [22592, x^4 - 2*x^3 - 9*x^2 + 8*x + 16, xF^2 + (t + 1)*xF + t - 4],
 [22784, x^4 - 12*x^2 - 8*x + 17, xF^2 + t*xF + 2*t - 5],
 [23552, x^4 - 10*x^2 + 23, xF^2 + t - 5],
 [24832, x^4 - 14*x^2 - 12*x + 18, xF^2 + t*xF + 3*t - 6],
 [26176, x^4 - 2*x^3 - 9*x^2 + 10*x + 23, xF^2 + (t + 1)*xF + 8*t - 11],
 [28224, x^4 - 2*x^3 - 13*x^2 + 14*x + 7, xF^2 + xF - 5],
 [29248, x^4 - 2*x^3 - 11*x^2 + 6*x + 23, xF^2 + (t + 1)*xF + 2*t - 5],
 [30976, x^4 - 12*x^2 + 25, xF^2 + t*xF - 5],
 [31744, x^4 - 14*x^2 + 31, xF^2 + 3*t - 7],
 [31808, x^4 - 2*x^3 - 11*x^2 + 12*x + 28, xF^2 + (t + 1)*xF + 7*t - 10],
 [33344, x^4 - 2*x^3 - 11*x^2 + 10*x + 25, xF^2 + (t + 1)*xF + t - 5],
 [34816, x^4 - 12*x^2 + 34, xF^2 + t - 6],
 [35392, x^4 - 2*x^3 - 13*x^2 + 14*x + 31, xF^2 + (t + 1)*xF + 6*t - 9],
 [36416, x^4 - 2*x^3 - 15*x^2 + 2*x + 31, xF^2 + (t + 1)*xF + 4*t - 7],
 [36928, x^4 - 2*x^3 - 15*x^2 + 16*x + 32, xF^2 + (t + 1)*xF + 5*t - 8],
 [37952, x^4 - 2*x^3 - 11*x^2 + 12*x + 34, xF^2 + xF + t - 6],
 [41216, x^4 - 14*x^2 - 4*x + 34, xF^2 + t*xF + t - 6],
 [42048, x^4 - 2*x^3 - 13*x^2 + 8*x + 34, xF^2 + (t + 1)*xF + 2*t - 6],
 [45632, x^4 - 2*x^3 - 13*x^2 + 14*x + 41, xF^2 + xF + 2*t - 7],
 [46144, x^4 - 2*x^3 - 13*x^2 + 12*x + 36, xF^2 + (t + 1)*xF + t - 6],
 [47104, x^4 - 16*x^2 + 46, xF^2 + 3*t - 8],
 [48128, x^4 - 14*x^2 + 47, xF^2 + t - 7],
 [48704, x^4 - 2*x^3 - 15*x^2 + 6*x + 41, xF^2 + (t + 1)*xF + 3*t - 7],
 [49408, x^4 - 16*x^2 - 8*x + 41, xF^2 + t*xF + 2*t - 7],
 [51200, x^4 - 20*x^2 + 50, xF^2 + 5*t - 10],
 [51264, x^4 - 2*x^3 - 15*x^2 + 16*x + 46, xF^2 + (t + 1)*xF + 8*t - 12],
 [51776, x^4 - 2*x^3 - 13*x^2 + 14*x + 47, xF^2 + xF + t - 7],
 [53312, x^4 - 2*x^3 - 17*x^2 + 4*x + 46, xF^2 + (t + 1)*xF + 4*t - 8],
 [53824, x^4 - 2*x^3 - 17*x^2 + 18*x + 23, xF^2 + xF - 7],
 [54848, x^4 - 2*x^3 - 17*x^2 + 18*x + 49, xF^2 + (t + 1)*xF + 7*t - 11],
 [55552, x^4 - 18*x^2 - 12*x + 46, xF^2 + t*xF + 3*t - 8],
 [55872, x^4 - 2*x^3 - 19*x^2 + 2*x + 49, xF^2 + (t + 1)*xF + 5*t - 9],
 [56384, x^4 - 2*x^3 - 19*x^2 + 20*x + 50, xF^2 + (t + 1)*xF + 6*t - 10],
 [56896, x^4 - 2*x^3 - 15*x^2 + 10*x + 47, xF^2 + (t + 1)*xF + 2*t - 7],
 [57600, x^4 - 16*x^2 + 49, xF^2 + t*xF - 7],
 [59648, x^4 - 20*x^2 - 16*x + 49, xF^2 + t*xF + 4*t - 9],
 [60992, x^4 - 2*x^3 - 15*x^2 + 14*x + 49, xF^2 + (t + 1)*xF + t - 7],
 [61696, x^4 - 22*x^2 - 20*x + 50, xF^2 + t*xF + 5*t - 10],
 [63488, x^4 - 16*x^2 + 62, xF^2 + t - 8],
 [64512, x^4 - 18*x^2 + 63, xF^2 + 3*t - 9],
 [65600, x^4 - 2*x^3 - 17*x^2 + 8*x + 56, xF^2 + (t + 1)*xF + 3*t - 8],
 [67648, x^4 - 2*x^3 - 15*x^2 + 16*x + 62, xF^2 + xF + t - 8],
 [69184, x^4 - 2*x^3 - 17*x^2 + 18*x + 63, xF^2 + xF + 3*t - 9],
 [69696, x^4 - 2*x^3 - 19*x^2 + 20*x + 34, xF^2 + xF - 8],
 [71936, x^4 - 18*x^2 - 4*x + 62, xF^2 + t*xF + t - 8],
 [72256, x^4 - 2*x^3 - 19*x^2 + 6*x + 63, xF^2 + (t + 1)*xF + 4*t - 9],
 [72704, x^4 - 22*x^2 + 71, xF^2 + 5*t - 11],
 [73792, x^4 - 2*x^3 - 17*x^2 + 12*x + 62, xF^2 + (t + 1)*xF + 2*t - 8],
 [74816, x^4 - 2*x^3 - 19*x^2 + 20*x + 68, xF^2 + xF + 4*t - 10],
 [76864, x^4 - 2*x^3 - 21*x^2 + 4*x + 68, xF^2 + (t + 1)*xF + 5*t - 10],
 [77888, x^4 - 2*x^3 - 17*x^2 + 16*x + 64, xF^2 + (t + 1)*xF + t - 8],
 [79424, x^4 - 2*x^3 - 23*x^2 + 2*x + 71, xF^2 + (t + 1)*xF + 6*t - 11],
 [79424, x^4 - 2*x^3 - 17*x^2 + 18*x + 73, xF^2 + xF + 2*t - 9],
 [79936, x^4 - 2*x^3 - 23*x^2 + 24*x + 72, xF^2 + (t + 1)*xF + 7*t - 12],
 [80896, x^4 - 18*x^2 + 79, xF^2 + t - 9],
 [83968, x^4 - 20*x^2 + 82, xF^2 + 3*t - 10],
 [84224, x^4 - 20*x^2 - 8*x + 73, xF^2 + t*xF + 2*t - 9],
 [84544, x^4 - 2*x^3 - 19*x^2 + 10*x + 73, xF^2 + (t + 1)*xF + 3*t - 9],
 [85568, x^4 - 2*x^3 - 17*x^2 + 18*x + 79, xF^2 + xF + t - 9],
 [87616, x^4 - 2*x^3 - 21*x^2 + 22*x + 47, xF^2 + xF - 9],
 [89152, x^4 - 2*x^3 - 19*x^2 + 20*x + 82, xF^2 + xF + 3*t - 10],
 [92416, x^4 - 20*x^2 + 81, xF^2 + t*xF - 9],
 [92736, x^4 - 2*x^3 - 19*x^2 + 14*x + 79, xF^2 + (t + 1)*xF + 2*t - 9],
 [93248, x^4 - 2*x^3 - 21*x^2 + 8*x + 82, xF^2 + (t + 1)*xF + 4*t - 10],
 [94464, x^4 - 22*x^2 - 12*x + 82, xF^2 + t*xF + 3*t - 10],
 [96256, x^4 - 24*x^2 + 94, xF^2 + 5*t - 12],
 [96832, x^4 - 2*x^3 - 19*x^2 + 18*x + 81, xF^2 + (t + 1)*xF + t - 9],
 [96832, x^4 - 2*x^3 - 21*x^2 + 22*x + 89, xF^2 + xF + 4*t - 11],
 [99392, x^4 - 2*x^3 - 19*x^2 + 20*x + 92, xF^2 + xF + 2*t - 10],
 [99904, x^4 - 2*x^3 - 23*x^2 + 6*x + 89, xF^2 + (t + 1)*xF + 5*t - 11]]
sage: