¿Por qué no puedo evaluar esta integral definida bivariada?

Aug 16 2020

Quiero usar directamente la función x para encontrar el valor exacto de la siguiente integral definida bivariada:

reg = ImplicitRegion[x^2 + y^2 <= 1 && x >= 0, {x, y}];
(* the answer should be π/2*Log[2] *)
Integrate[(1 + x*y)/(1 + x^2 + y^2), Element[{x, y}, reg]]

Esta integral bivariada no es complicada, pero la fórmula anterior regresa tal cual. Quiero saber dónde está el problema y cómo debo modificarlo.

NIntegrate[(1 + x*y)/(1 + x^2 + y^2), Element[{x, y}, reg]]
(*1.08879304515*)

Respuestas

8 cvgmt Aug 16 2020 at 11:03
Integrate[(1 + x*y)/(1 + x^2 + y^2), {x, y} ∈ Disk[{0, 0}, 1, {-π/2, π/2}]]
7 J.M.'stechnicaldifficulties Aug 16 2020 at 10:56

Uno podría usar una especificación de región alternativa:

reg = RegionIntersection[Disk[], HalfPlane[{0, 0}, {0, 1}, {1, 0}]];
Integrate[(1 + x y)/(1 + x^2 + y^2), {x, y} ∈ reg]
   1/2 π Log[2]

o cambiar a coordenadas polares:

Simplify[((1 + x y)/(1 + x^2 + y^2) /. Thread[{x, y} -> r AngleVector[θ]])
         Det[D[r AngleVector[θ], {{r, θ}}]]]
   (r + r^3 Cos[θ] Sin[θ])/(1 + r^2)

Integrate[(r + r^3 Cos[θ] Sin[θ])/(1 + r^2), {r, 0, 1}, {θ, -π/2, π/2}]
   1/2 π Log[2]