대체 컴퓨팅 증명 $\sum _{n=1}^{\infty } \frac{4^n H_n}{n^2 {2n\choose n}}$
에서 이 솔루션 우리는 것을 보여 주었다
$$\sum _{n=1}^{\infty } \frac{4^n H_n}{n^2 {2n\choose n}}=6\ln(2)\zeta(2)+\frac72\zeta(3)\tag1$$
사용하여 신원을
$$\frac{\arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^\infty\frac{(2x)^{2n-1}}{n{2n\choose n}}$$
여기 내 질문은 우리가 증명할 수 있습니까? $(1)$기본 방법을 사용하여 다른 방식으로? 그래도 내 질문 제한이 귀하의 접근 방식을 제한하지 않도록하십시오. 모든 접근 방식에 감사드립니다.
이 게시물 (도전)의 요점은 가능한 경우 다른 기술을 배우고이 사이트를 더 재미있게 만드는 것입니다.
감사합니다.
답변
스케치 (현재). 신원 사용$$\int_0^1\frac{x^{n-1}}{\sqrt{1-x}}\,{\rm d}x=\frac{4^n}{n\binom{2n}n}\,\,\,\text{and}\,\,\,\sum_{n\ge1}\frac{H_n}nx^n=\operatorname{Li}_2(x)+\frac12\log^2(1-x)$$ 준다 $$\sum_{n\ge1}\frac{4^nH_n}{n^2\binom{2n}n}=\sum_{n\ge1}\frac{H_n}n\int_0^1\frac{x^{n-1}}{\sqrt{1-x}}\,{\rm d}x=\frac12\int_0^1\frac{2\operatorname{Li}_2(x)+\log^2(1-x)}{x\sqrt{1-x}}\,{\rm d}x$$ 성찰과 집행 $\sqrt x\mapsto x$ 이후 수익률 \begin{align*} \frac12\int_0^1\frac{2\operatorname{Li}_2(x)+\log^2(1-x)}{x\sqrt{1-x}}\,{\rm d}x&=\frac12\int_0^1\frac{2\operatorname{Li}_2(1-x)+\log^2(x)}{(1-x)\sqrt{x}}\,{\rm d}x\\ &=\int_0^1\frac{2\operatorname{Li}_2(1-x^2)+4\log^2(x)}{1-x^2}\,{\rm d}x \end{align*} 후자의 적분은 다음과 같이 평가됩니다. $7\zeta(3)$기하학적 시리즈를 사용합니다. 첫 번째 적분의 경우 IBP를 두 번 적용하여\begin{align*} \int_0^1\frac{\operatorname{Li}_2(1-x^2)}{1-x^2}\,{\rm d}x&=-\left[\frac12\operatorname{Li}_2(1-x^2)\log\left(\frac{1-x}{1+x}\right)\right]_0^1+2\int_0^1\frac{x\log x\log\left(\frac{1-x}{1+x}\right)}{1-x^2}\,{\rm d}x\\ &=-\left[\frac12 x\log x\log^2\left(\frac{1-x}{1+x}\right)\right]_0^1+\int_0^1(1+\log x)\log^2\left(\frac{1-x}{1+x}\right)\,{\rm d}x\\ &=\frac{\pi^2}6+\int_0^1\log x\log^2\left(\frac{1-x}{1+x}\right)\,{\rm d}x \end{align*} 나는 현재 나머지 적분에 우아한 방식으로 접근하는 방법을 잘 모르겠습니다.
참고 : 로그의 일반적인 직렬 확장과 고조파 수의 적분 표현을 사용하면 나머지 적분을 평가할 수 있습니다. 그러나이 방법은 다소 불명예 스럽기 때문에 좀 더 만족스러운 것을 찾을 수있을 것입니다.
우리는 책 (거의) 불가능한 적분, 합계 및 시리즈에 제시된 강력한 형태의 베타 함수를 사용합니다 .$\displaystyle \int_0^1 \frac{x^{a-1}+x^{b-1}}{(1+x)^{a+b}} dx = \operatorname{B}(a,b)$, (페이지 참조 $72$-$73$).
세트 $a=b=n$ 우리는
$$\int_0^1\frac{2x^{n-1}}{(1+x)^{2n}}dx=\frac{\Gamma^2(n)}{\Gamma(2n)}=\frac{2}{n{2n\choose n}}$$
그래서 $$\frac{1}{n{2n\choose n}}=\int_0^1\frac{x^{n-1}}{(1+x)^{2n}}dx=\int_0^1\frac1x\left(\frac{x}{(1+x)^2}\right)^ndx$$
$$\Longrightarrow \sum_{n=1}^\infty\frac{4^nH_n}{n^2{2n\choose n}}=\int_0^1\frac1x\left(\sum_{n=1}^\infty\frac{H_n}{n}\left(\frac{4x}{(1+x)^2}\right)^n\right)dx$$
$$=\int_0^1\frac1x\left(\text{Li}_2\left(\frac{4x}{(1+x)^2}\right)+\frac12\ln\left(1-\frac{4x}{(1+x)^2}\right)\right)dx$$
$$\overset{IBP}{=}\int_0^1\frac{2+2x}{x(1-x)}\ln x\ln\left(\frac{1-x}{1+x}\right)dx$$
$$=\int_0^1\left(\frac2x+\frac{4}{1-x}\right)\ln x\ln\left(\frac{1-x}{1+x}\right)dx$$
$$\small{=2\int_0^1\frac{\ln x\ln(1-x)}{x}dx+4\underbrace{\int_0^1\frac{\ln x\ln(1-x)}{1-x}dx}_{1-x\to x}-2\int_0^1\frac{\ln x\ln(1+x)}{x}dx-4\int_0^1\frac{\ln x\ln(1+x)}{1-x}dx}$$
$$=6\underbrace{\int_0^1\frac{\ln x\ln(1-x)}{x}dx}_{\zeta(3)}-2\underbrace{\int_0^1\frac{\ln x\ln(1+x)}{x}dx}_{-\frac34\zeta(3)}-4\underbrace{\int_0^1\frac{\ln x\ln(1+x)}{1-x}dx}_{\zeta(3)-\frac32\ln(2)\zeta(2)}$$
$$=6\ln(2)\zeta(2)+\frac72\zeta(3)$$
후자의 적분은 여기서 계산 됩니다 .
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[5px,#ffd]{\sum_{n = 1}^{\infty}{4^{n}H_{n} \over n^{2}{2n \choose n}}} = \int_{0}^{4}\sum_{n = 1}^{\infty}{H_{n} \over n{2n \choose n}} \,x^{n - 1}\,\dd x \\[5mm] = &\ \int_{0}^{4}\sum_{n = 1}^{\infty}H_{n}\, x^{n - 1}\,{\Gamma\pars{n} \Gamma\pars{n + 1} \over \Gamma\pars{2n + 1}}\,\dd x \\[5mm] = &\ \int_{0}^{4}\sum_{n = 1}^{\infty}H_{n}\, x^{n - 1}\int_{0}^{1}t^{n - 1} \pars{1 - t}^{n}\,\dd t\,\dd x \\[5mm] = &\ \int_{0}^{4}\int_{0}^{1}\sum_{n = 1}^{\infty}H_{n} \bracks{xt\pars{1 - t}}^{\, n}\,{\dd t\,\dd x \over tx} \\[5mm] = &\ \int_{0}^{4}\int_{0}^{1}\braces{% -\,{\ln\pars{1 - xt\bracks{1-t}} \over 1 - xt\pars{1-t}}} {\dd t\,\dd x \over tx} \\[5mm] = &\ \int_{0}^{1}{2\ln^{2}\pars{\verts{1 - 2t}} + \mrm{Li}_{2}\pars{4\bracks{1 - t})\, t}\over t}\,\dd t \\[5mm] = &\ 2\int_{-1/2}^{1/2}{2\ln^{2}\pars{\verts{2t}} + \mrm{Li}_{2}\pars{1 - 4t^{2}}\over 1 + 2t}\,\dd t \\[5mm] = &\ 4\int_{0}^{1/2}{2\ln^{2}\pars{2t} + \mrm{Li}_{2}\pars{1 - 4t^{2}} \over 1 - 4t^{2}}\,\dd t \\[5mm] = &\ 2\int_{0}^{1}{2\ln^{2}\pars{t} + \mrm{Li}_{2}\pars{1 - t^{2}} \over 1 - t^{2}}\,\dd t \\[5mm] = &\ 4\ \underbrace{\int_{0}^{1}{\ln^{2}\pars{t} \over 1 - t^{2}}\,\dd t} _{\ds{\color{red}{\LARGE\S}:\ {7 \over 4}\,\zeta\pars{3}}}\ +\ 2\, \underbrace{\int_{0}^{1}{\mrm{Li}_{2}\pars{1 - t^{2}} \over 1 - t^{2}}\,\dd t}_{\ds{\color{red}{\LARGE *}:\ {1 \over 2}\,\pi^{2}\ln\pars{2} - {7 \over 4}\,\zeta\pars{3}}} \\[5mm] = &\ \bbx{6\ln\pars{2}\,\zeta\pars{2} + {7 \over 2}\,\zeta\pars{3}} \\ & \end{align}
$\left\{\begin{array}{lcl} \ds{\color{red}{\LARGE\S}} & \ds{:} & \mbox{First} "Partial\ Fraction\ Split.\ \mbox{Next, integrate}\ twice\ \mbox{by parts.} \\[2mm] \ds{\color{red}{\LARGE *}} & \ds{:} & \mbox{After integration by parts, the final expression seems to be a doable and} \\ && \mbox{known integral.} \end{array}\right.$