Интерпретация и единицы элемента ковариации в портфельном риске

Aug 17 2020

Данный портфельный риск составляет $\mathbf{w}\boldsymbol{\Sigma}\mathbf{w}$ где $\boldsymbol{\Sigma}$ ковариационная матрица, диагональные элементы которой $\sigma^2_{n}$ - дисперсии доходности отдельных активов, недиагональные элементы которых представляют собой попарные ковариации активов, $\sigma_{n,\neg n}$

какова интерпретация элемента $\sigma_{1,2}$ в $\boldsymbol{\Sigma}$, а как бы вы описали его подразделения?

Если $\sigma_{1,2}=0.1$ было бы правильно сказать следующее?

"движение доходности актива 1 в среднем зависит от движения доходности актива 2 на 10% стандартных отклонений и наоборот"

Ответы

2 demully Sep 18 2020 at 16:41

Проблема интерпретации и единиц измерения, то есть отсутствие легко интуитивного ответа, именно поэтому кванты / эконометристы и т. Д., Как правило, избегают слишком много говорить о ковариациях [даже если они абсолютно необходимы; и часто используется]. Таким образом, если что-либо, связанное с ковариациями, должно интерпретироваться, не говоря уже о объяснении, по умолчанию обычно выражается в терминах корреляции, которая имеет интуитивно понятные единицы: ограниченный [-1,1] с 0 = независимость и т. Д.

Cor (1,2) = Cov (1,2) / (sd (1) * sd (2))

Cov (1,2) = Cor (1,2) * sd (1) * sd (2)

Таким образом, «единицы» здесь - это смесь продуктов из трех мер, каждая со своими собственными единицами: две волатильности и ограниченная мера ассоциации. Как таковые, они существуют, но не имеют интуитивного объяснения.

Самое близкое, что можно сделать, - это выразить ковариацию как предельное изменение дисперсии портфеля на единицу изменения произведения весов 1 и 2. Что, если вежливо, остается в высшей степени неэлегантным ;-)

Напомним также, что традиционная бета-версия OLS может быть выражена как:

Бета (1 | 2) = Cov (1,2) / Var (2) = E (d1) / d2

E (d1) = Cov (1,2) * d2 / Var (2)

Таким образом, изменение +1 в Активе2 имеет +0,1, деленное на его дисперсию, на Актив1. Это то же самое, что сказать, что движение +1 сигма в Активе 2 имеет 0,1, деленное на его стандартное отклонение в Активе 1. Это то же самое, что сказать (где Z = 1 - шок 1 сигма):

d1 / d2 = Cov (1,2) / Var (2)

d1 / z2 = Cov (1,2) / SD (2)

z1 / z2 = Cov (1,2) / (SD (1) * SD (2)) = Cor (1,2)!

Таким образом, интуитивным способом сделать такое утверждение, которое вы пытаетесь сделать выше, остается перевод ваших ковариаций в (интуитивные) безразмерные корреляции. Один сигма-ход в 1 или 2 будет иметь предельный сигма-эффект Cor (1,2) для другого.

Как бы вы ни подходили к этому, вам всегда нужно обрабатывать ковариацию с помощью дополнительной метрики (с ее собственными единицами, будь то абсолютная доходность, доходность с поправкой на объем или веса), чтобы получить здесь любой интуитивно понятный объяснительный результат. Традиционная формулировка w.Cov.w эффективна для прогнозирования риска портфеля; но когда дело доходит до интерпретации и объяснения, он терпит неудачу. Вот почему публикации неизбежно показывают предпочтение ассоциированным корреляционным матрицам. Оба всегда будут давать одинаковые результаты / прогнозы; с выбором между двумя, в конечном счете, вопросом предсказания или интерпретации (то есть презентационной природы).

DaveHarris Aug 18 2020 at 12:21

Итак, давайте предположим, что портфель полностью состоит из консолей или однопериодных дисконтных облигаций. Это было бы сомнительно для акций, потому что$$_iR_t=\frac{_ip_{t+1}}{_ip_t}\times\frac{_iq_{t+1}}{_iq_t}-1$$ а также $$_jR_t=\frac{_jp_{t+1}}{_jp_t}\times\frac{_jq_{t+1}}{_jq_t}-1$$если игнорировать эффект дивидендов. Это делает возврат продукта распределением двух распределений отношения. Такие модели, как CAPM, избегают этой проблемы, предполагая, что все параметры известны и никто не делает никаких оценок. При умеренных предположениях у этих доходностей не будет определенной ковариационной матрицы даже в логическом пространстве.

Однако, что касается вашего вопроса, важно помнить, что такие параметры, как $\{\mu_i,\mu_j,\sigma_{i,j},\sigma_{i,i},\sigma_{j,j}\}$считаются фиксированными точками в теории частотности. Такие модели, как CAPM, не работают в байесовском пространстве, потому что параметры являются случайными величинами.

Итак, отвечая на ваш вопрос, единицы измерения $\sigma_{i,j}$находятся в направленно подписанных квадратных доходах избытка / дефицита от совместного ожидания. Это можно рассматривать как область с направлением.

Обычная интерпретация всегда масштабируется по дисперсии, отмечая, что $\beta_{i,j}=\frac{\sigma_{i,j}}{\sigma_{i,i}}.$

markleeds Aug 19 2020 at 03:38

@develarist: Я еще кое-что читал, и это примерно так. (не говоря об этом в отношении CAPM и не комментируя ваше текущее обсуждение с Дэйвом). Предположим, у вас есть$\sigma_{(1,2)}$ который обозначает ковариацию (доходности) акции 1 и акции 2. Обозначим $x$ как возврат (в примере) акции 1 и $y$ как возврат (в образце) запасов 2.

Первый шаг к интерпретации - это сделать $\sigma_{(1,2)}$ и разделите его на выборочную дисперсию доходности акций 1. Назовите это $\beta_{(1,2)}$. Затем, как только вы это сделаете,$\beta_{(1,2)}$ можно интерпретировать как коэффициент (а не точку пересечения другого) простой регрессии доходности акции 1 по сравнению с доходностью акции_2, где доходность акции 2 является ответом ($y$), а доходность акции 1 является предиктором ($x$).

Дело в том, что $\sigma_{(1,2)}$0,1 на самом деле мало что значит, потому что его нужно разделить на выборочную дисперсию доходности акции 1, чтобы описывалась регрессионная интерпретация. Конечно, если выборочная дисперсия доходности акции 1 оказалась равной 1,0, то можно было бы интерпретировать ковариацию как оценочную величину, на которую увеличивается доходность акции 2 для каждой единицы увеличения доходности акции 1.

Обратите внимание, что кажущееся противоречие, о котором я упоминал в своем исходном посте (которое сбило меня с толку), не существует, потому что если мы перевернем регрессию и сделаем доходность акции 1 (x) ответом, а доходность акции 2 (y) предиктором, тогда потребуется разделить ковариацию, $\sigma_{(1,2)}$по выборочной дисперсии доходности акции 2 (y), а не по выборочной дисперсии доходности акции 1 (x). Итак, в определении нет противоречия. Надеюсь, это проясняет ситуацию.

О, также, насколько я могу судить, также, похоже, не существует какой-либо связи между ковариацией и R ^ 2 регрессии, о которой я ошибочно думал. Мои извинения за путаницу.