$\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2=\left|2\frac{\partial u}{\partial z}\right|^2$
Я читаю «Комплексный анализ» Штейна и Шакарчи (стр. 13). Цель - доказать, что$\partial f/\partial z=2\, \partial u/\partial z$ где $f=u+iv$ и $z=x+iy$. Доказательство в книге утверждает, что$$\begin{align}\det J_F (x_0,y_0)&=\frac{\partial u}{\partial x}\frac{\partial v}{\partial y}-\frac{\partial v}{\partial x}\frac{\partial u}{\partial y}\\&=\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2\\&\overset{?}{=}\left|2\frac{\partial u}{\partial z}\right|^2.\end{align}$$Я понимаю все, кроме последнего шага, отмеченного знаком «?». Вместо этого я получаю$$\begin{align}\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2&=\frac{\partial u^2}{\partial x^2}+\frac{\partial u^2}{\partial y^2}\\&=\frac{\partial u^2\partial y^2+\partial u^2\partial x^2}{\partial x^2\partial y^2}\\&=\frac{\partial u^2(\partial x^2+\partial y^2)}{\partial x^2\partial y^2}\\&=\frac{\partial u^2\partial z^2}{\partial x^2\partial y^2}\end{align}$$ но я не понимаю, почему это должно быть равно $\left|2\frac{\partial u}{\partial z}\right|^2$.
Ответы
Мы определяем \begin{align} \dfrac{\partial u}{\partial z} &:= \dfrac{1}{2}\left(\dfrac{\partial u}{\partial x} - i \dfrac{\partial u}{\partial y}\right) \end{align} Итак, по определению модуля комплексного числа (и того факта, что $u$ вещественнозначен), сразу следует, что \begin{align} \left(\dfrac{\partial u}{\partial x}\right)^2 + \left(\dfrac{\partial u}{\partial y}\right)^2 &= \left|2\dfrac{\partial u}{\partial z}\right|^2. \end{align}
В качестве примечания мы также определяем \begin{align} \dfrac{\partial u}{\partial \overline{z}} &:= \dfrac{1}{2}\left(\dfrac{\partial u}{\partial x} + i \dfrac{\partial u}{\partial y}\right) \end{align} Отсюда также следует, что \begin{align} \left(\dfrac{\partial u}{\partial x}\right)^2 + \left(\dfrac{\partial u}{\partial y}\right)^2 &= \left|2\dfrac{\partial u}{\partial z}\right|^2 = \left|2\dfrac{\partial u}{\partial \overline{z}}\right|^2 . \end{align}