Верна ли эта сильная оценка выпуклости?
Позволять $F:[0,\infty) \to [0,\infty)$ быть $C^2$ строго выпуклая функция, и пусть $r_0<r_1$- положительные фиксированные константы. Позволять$$a<r_0<r_1<c<b, \tag{1}$$ и разреши $\lambda \in [0,1]$ удовлетворить $ \lambda a +(1-\lambda)b=c. $
Набор $D(a,b,c)=\lambda F(a)+(1-\lambda)F(b)-F(c) $.
Вопрос: существует ли постоянная $m>0$ (что может зависеть от $f,r_0,r_1$ но не на $a,b,c$) такие, что $ D(a,b,c) \ge m\lambda(1-\lambda)(r_1-r_0)^2 $ на любой выбор $a,b,c$ удовлетворяющее условие $(1)$?
Вот ключевой момент:
Если $f'' \ge m$, тогда $f$является сильно выпуклым с параметром$m$, так $$ D(a,b,c) \ge \frac{1}{2}m\lambda(1-\lambda)(b-a)^2 \ge \frac{1}{2}m\lambda(1-\lambda)(r_1-r_0)^2 \tag{2} $$как требуется. Однако в нашем случае$c$ и $b$ может быть сколь угодно большим, а $F$ может стать «менее выпуклым» (ближе к аффинному), когда $x \to \infty$. Другими словами, если$\lim_{x \to \infty}F''(x)=0$, то нижняя оценка $(2)$ становится тривиальной оценкой $$ D(a,b,c) \ge \frac{1}{2} (\inf F'')\lambda(1-\lambda)(b-a)^2=0. $$
Итак, «наивное применение» сильной выпуклости здесь не применимо. Однако интуиция подсказывает, что даже если$\lim_{x \to \infty}F''(x)=0$, мы должны каким-то образом столкнуться с «содержанием сильной выпуклости», которое лежит между фиксированными $r_0$ и $r_1$ так что "выпуклый зазор" $D(a,b,c)$ должен быть отделен от нуля.
Я думал выразить $D(a,b,c)$ как некий неотъемлемый элемент $F''$ над доменом, который содержит $[r_0,r_1]$ но пока безуспешно.
Ответы
Если достаточно потребовать, чтобы $F$ строго выпукла и дифференцируема на интервале $I \subset \Bbb R$. (Даже требование дифференцируемости можно отбросить, см. Примечания в конце ответа.)
Для $a, b \in I$ с участием $a < b$ и $c = \lambda a + (1 - \lambda) b$ с участием $0 \le \lambda \le 1$ мы можем написать $$ D(a, b, c) = \lambda F(a)+(1-\lambda)F(b)-F(c) \\ = \lambda \bigl \{ F(a) - F(c) - (a-c)F'(c) \bigr\} + (1- \lambda) \bigl \{F(b) - F(c) - (b-c)F'(c)\bigr\} \, . $$
Предлагается ввести $$ H(u, v) = F(u) - F(v) - (u-v) F'(v) $$ для $u, v \in I$. $H$ обладает следующими свойствами:
- $H(u, v) > 0$ если $u \ne v$.
- $H(u_1, v) > H(u_2, v)$ если $u_1 < u_2 \le v$, т.е. $H(u,v)$ уменьшается в $u$ так долго как $u \le v$.
- $H(u, v_1) < H(u, v_2)$ если $u \le v_1 < v_2$, т.е. $H(u, v)$ увеличивается в $v$ так долго как $u \le v$.
Свойство (1) является прямым следствием строгой выпуклости: $F(u)$ больше соответствующего значения касательной при $x=v$.
Для свойства (2) полагаем $u_1 < u_2 \le v$ и вычислить $$ H(u_1, v) - H(u_2, v) = F(u_1) - F(u_2) - (u_1 - u_2) F'(v) \\ \ge F(u_1) - F(u_2) - (u_1 - u_2) F'(u_2) = H(u_1, u_2) > 0 \, . $$ Здесь мы использовали это $F'$ повышается.
Для свойства (3) полагаем $u \le v_1 < v_2$ и вычислить $$ H(u,v_1) - H(u, v_2) = -F(v_1) - (u-v_1)F'(v_1) + F(v_2) + (u-v_2) F'(v_2) \\ \le -F(v_1) - (u-v_1)F'(v_2) + F(v_2) + (u-v_2) F'(v_2) \\ = -H(v_1, v_2) < 0 \, . $$
С помощью этих инструментов оценивая $D(a, b, c)$снизу становится легко. Если$a \le r_0 < r_1 \le c < b$ тогда $$ D(a, b, c) = \lambda H(a, c) + (1-\lambda)H(b,c) \\ \ge \lambda H(a, c) \ge \lambda H(r_0, r_1) \ge \lambda(1- \lambda) H(r_0, r_1) \\ = m \lambda(1-\lambda) (r_1-r_0)^2 $$ с участием $m$ определяется как $$ m = \frac{H(r_0, r_1)}{(r_1-r_0)^2} = \frac{F(r_0) - F(r_1) - (r_0 - r_1) F'(r_1)}{(r_1-r_0)^2} > 0 \, . $$
Примечания:
- Предположение, что $F$ определяется только на $[0, \infty)$ со значениями в $[0, \infty)$ не использовался в доказательстве.
- От требования дифференцируемости также можно отказаться. Выпуклая функция имеет односторонние производные в каждой внутренней точке интервала. Приведенное выше доказательство все еще работает, если мы заменим$F'$ по правой (или левой) производной.
Альтернативное решение
Докажем, что лучшая постоянная $m$ является $$m = \frac{F(r_0) - F(r_1) - F'(r_1)(r_0 - r_1)}{(r_1 - r_0)^2} > 0.$$ (Примечание: на самом деле он равен $\frac{1}{(r_1 - r_0)^2}\int_{r_0}^{r_1} (x- r_0) F''(x) \mathrm{d} x$ что положительно, поскольку $F(x)$ строго выпуклый.)
Сначала перефразируем проблему следующим образом:
Позволять $F : [0, \infty) \to [0, \infty)$ быть $\mathrm{C}^2$строго выпуклая функция. Позволять$0 < r_0 < r_1$быть фиксированными константами. Существует ли постоянная$m > 0$ такой, что $$\lambda F(a) + (1 - \lambda)F(b) - F(\lambda a + (1 - \lambda)b) \ge m \lambda (1 - \lambda) (r_1 - r_0)^2$$ для любых реальных чисел $a, b, \lambda$ удовлетворение $$0 < \lambda < 1, \quad 0 \le a < r_0 < r_1 < \lambda a + (1 - \lambda) b\ ?$$
Во-вторых, у нас есть \begin{align} &\inf_{0 < \lambda < 1,\ 0 \le a < r_0 < r_1 < \lambda a + (1 - \lambda) b} \frac{\lambda F(a) + (1 - \lambda)F(b) - F(\lambda a + (1 - \lambda)b)}{\lambda (1 - \lambda)}\\ =\ & \inf_{0 < \lambda < 1, \ 0 \le a < r_0} \left(\inf_{b > \frac{r_1 - \lambda a}{1 - \lambda}} \frac{\lambda F(a) + (1 - \lambda)F(b) - F(\lambda a + (1 - \lambda)b)}{\lambda (1 - \lambda)}\right)\\ =\ & \inf_{0 < \lambda < 1, \ 0 \le a < r_0} \frac{\lambda F(a) + (1 - \lambda)F(\frac{r_1 - \lambda a}{1 - \lambda}) - F(r_1)}{\lambda (1 - \lambda)} \tag{1}\\ =\ & \inf_{0 < \lambda < 1} \left(\inf_{0 \le a < r_0} \frac{\lambda F(a) + (1 - \lambda)F(\frac{r_1 - \lambda a}{1 - \lambda}) - F(r_1)}{\lambda (1 - \lambda)} \right)\\ =\ & \inf_{0 < \lambda < 1} \frac{\lambda F(r_0) + (1 - \lambda)F(\frac{r_1 - \lambda r_0}{1 - \lambda}) - F(r_1)}{\lambda (1 - \lambda)} \tag{2}\\ =\ & \inf_{y > r_1} \frac{(y - r_0)(y - r_1)F(r_0) + (r_1 - r_0)(y - r_0)F(y) - (y - r_0)^2F(r_1)}{(r_1 - r_0)(y - r_1)} \tag{3}\\ =\ & \lim_{y \to r_1} \frac{(y - r_0)(y - r_1)F(r_0) + (r_1 - r_0)(y - r_0)F(y) - (y - r_0)^2F(r_1)}{(r_1 - r_0)(y - r_1)} \tag{4}\\ =\ & F(r_0) - F(r_1) - F'(r_1)(r_0 - r_1). \tag{5} \end{align}Пояснения:
(1): Позволив$f(b) = (1 - \lambda)F(b) - F(\lambda a + (1 - \lambda)b)$, у нас есть $f'(b) = (1 - \lambda)F'(b) - (1 - \lambda) F'(\lambda a + (1 - \lambda)b) \ge 0$ (Примечание: $F'(x)$ не убывает) и, следовательно, $f(b)$ не убывает на $[b, \infty)$.
(2): позволяя$g(a) = \lambda F(a) + (1 - \lambda)F(\frac{r_1 - \lambda a}{1 - \lambda})$, у нас есть $g'(a) = \lambda F'(a) - \lambda F'(\frac{r_1 - \lambda a}{1 - \lambda}) \le 0$ (Примечание: $F'(x)$ не убывает) и, следовательно, $g(a)$ не увеличивается на $[0, r_0)$.
(3): Используйте замену$y = \frac{r_1 - \lambda r_0}{1 - \lambda}$.
(4): Используйте следующий факт (доказательство приведено в конце):
Факт 1 : Пусть$$g(y) \triangleq \frac{(y - r_0)(y - r_1)F(r_0) + (r_1 - r_0)(y - r_0)F(y) - (y - r_0)^2F(r_1)}{(r_1 - r_0)(y - r_1)}.$$ потом $g'(y) \ge 0$ на $(r_1, \infty)$.
(5) Примените правило L'Hopital.
Мы сделали.
$\phantom{2}$
Доказательство факта 1 : у нас есть$y > r_1$, \begin{align} (r_1 - r_0)(y - r_1)^2g'(y) &= (y - r_1)^2F(r_0) - (r_1 - r_0)^2F(y)\\ &\quad + (r_1 - r_0)(y - r_0)(y - r_1)F'(y)\\ &\quad + (-2(y - r_0)(y - r_1) + (y - r_0)^2)F(r_1) \\ &= (y - r_1)^2F(r_0) - (r_1 - r_0)^2( F(y) - F(r_1) ) \\ &\quad - (r_1 - r_0)^2F(r_1) + (r_1 - r_0)(y - r_0)(y - r_1)F'(y)\\ &\quad + (-2(y - r_0)(y - r_1) + (y - r_0)^2)F(r_1)\\ &\ge (y - r_1)^2F(r_0) - (r_1 - r_0)^2(y - r_1)F'(y) \\ &\quad - (r_1 - r_0)^2F(r_1) + (r_1 - r_0)(y - r_0)(y - r_1)F'(y)\\ &\quad + (-2(y - r_0)(y - r_1) + (y - r_0)^2)F(r_1)\\ &= (y - r_1)^2F(r_0) - (y - r_1)^2F(r_1) + (r_1 - r_0)(y - r_1)^2F'(y) \\ &\ge (y - r_1)^2F(r_0) - (y - r_1)^2F(r_1) + (r_1 - r_0)(y - r_1)^2F'(r_1)\\ &= (y - r_1)^2[F(r_0) - F(r_1) - F'(r_1)(r_0 - r_1)]\\ &\ge 0 \end{align} где мы использовали $(y - r_1)F'(y) \ge F(y) - F(r_1)$ и $F(r_0) - F(r_1) - F'(r_1)(r_0 - r_1) \ge 0$ и $F'(y) \ge F'(r_1)$ (Заметка: $F(x) \ge F(y) + F'(y)(x-y)$ для выпуклых функций; $F'(x)$не убывает.). Мы сделали.