İki sıfır kümesi homeomorfik ise, kümeler üzerindeki polinom halkası da homeomorfik midir?

Aug 19 2020

Bu bariz hatayı yaptığım için çok üzgünüm, ideallerin de asal olmasını istemeliydim. Bunu düzelttim.

İzin Vermek $R$ karmaşık polinomların halkası olmak $n$ değişkenler ve izin ver $I$ ve $J$ ana ideal olmak $R$. Düşünmek$V(I)$ ve $V(J)$, ideallerin sıfır kümesi, yani idealdeki tüm polinomlar tarafından sıfıra gönderilen noktalar kümesi. Bu setlerin her birini verir,$V(I)$ ve $V(J)$olağan topoloji tarafından indüklenen alt uzay topolojisi $\mathbb{C}^n$ ve sonra varsayalım $V(I)$ ve $V(J)$homeomorfiktir. Şimdi yüzükleri düşünün$R/I$ ve $R/J$. Halkalar olarak izomorfik mi olmalılar? Eğer öyleyse, bu sonucun bir adı var mı ve lütfen bir kanıt sunabilir misiniz? Olmazsa bir karşı örnek isterim.

Yardım için daha fazla soru açıklamak, burada somut bir örnektir:
De ki$R$ iki değişkenli karmaşık polinomların halkasıdır ve polinomlar tarafından üretilen ideallere sahip olduğumuzu varsayalım $x^2+y^2-1$ ve $x^2+y^2-2$. Bu durumda iki topoloji homeomorfiktir ve ayrıca bölüm halkaları halka izomorfiktir. Homeomorfizmin halka-izomorfizmi ima ettiği her zaman böyle olmalı mı? Değilse, bunun yerine diffeomorfizm gibi daha güçlü bir koşul gerekli midir?

Yanıtlar

7 Stahl Aug 19 2020 at 13:58

Cevap hayır! İzin Vermek$k = \Bbb{C},$ ve izin ver $I = (x^2 - y^3)$ ve $J = (x)$ içeride $\Bbb{C}[x,y].$ İlk önce şunu unutmayın $$\Bbb{C}[x,y]/I\cong\Bbb{C}[t^2,t^3]\not\cong\Bbb{C}[t]\cong\Bbb{C}[x,y]/J$$(ilki bütünsel olarak kapalı değildir, oysa ikincisi kapalıdır). Ancak bunu iddia ediyorum$V(I)$ ve $V(J)$ alt kümeleri olarak homeomorfik $\Bbb{C}^2$ standart topolojisi ile.

Haritalarımız var \begin{align*} \phi : V(x)&\to V(x^2 - y^3)\\ (0,t)&\mapsto (t^3, t^2) \end{align*} ve \begin{align*} \psi : V(x^2 - y^3)&\to V(x)\\ (a,b)&\mapsto\begin{cases}(0,\frac{a}{b}),\quad b\neq 0,\\ (0,0),\quad a = b = 0.\end{cases} \end{align*}

İlk olarak, bu haritaların birbirinin tersi olduğuna dikkat edin. Açık ki$\psi\circ\phi = \operatorname{id},$ ve eğer $b\neq 0$ hesaplıyoruz \begin{align*} \phi\circ\psi(a,b) &= \phi(0,\frac ab)\\ &= \left(\left(\frac{a}{b}\right)^3,\left(\frac{a}{b}\right)^2\right). \end{align*} Fakat \begin{align*} a^2 = b^3&\implies\frac{a^2}{b^2} = b\\ &\implies\left(\frac{a}{b}\right)^3 = \frac{a}{b}\cdot b = a. \end{align*} Bunu da gözlemliyoruz $\psi\circ\phi(0,0) = (0,0).$

Şimdi, doğrulamamız gereken tek şey bu haritaların sürekli olduğu. Biri bunu görüyor$\phi$polinomlar tarafından verildiği gibi süreklidir. Buradaki zorluk, bunu kontrol etmektir$\psi$süreklidir. Bu açık uzakta$b = 0,$ bu yüzden sadece şurada sürekliliği kontrol etmemiz gerekiyor $(a,b) = (0,0).$

İddia: İşlev$\psi$ sürekli $(0,0).$

İspat: Her bir bileşeninin$\psi$süreklidir. Açıkça$(a,b)\mapsto 0$ süreklidir, bu nedenle yalnızca haritanın sürekliliği ile ilgilenmemiz gerekir $(a,b)\mapsto a/b$ -de $b = 0.$

Açıkça, bunu herkes için göstermemiz gerekiyor $\epsilon > 0,$ var $\delta > 0$ öyle ki eğer

  1. $(\alpha,\beta)\in V(x^2 - y^3),$ ve
  2. $0 < \left|(\alpha,\beta)\right| < \delta,$

sonra $\left|\frac{\alpha}{\beta}\right| < \epsilon.$

Önce bunu gözlemleyin çünkü $(\alpha,\beta)\in V(x^2 - y^3),$ sahibiz $\alpha^2 = \beta^3,$ Hangi ima $\left|\alpha\right|^2 = \left|\beta\right|^3.$ Şimdi ayarla $\delta = \epsilon^2.$ Sahibiz \begin{align*} 0 < \left|(\alpha,\beta)\right| < \delta &\iff 0^2 < \left|(\alpha,\beta)\right|^2 < \delta^2\\ &\iff 0 < \left|\alpha\right|^2 + \left|\beta\right|^2 = \left|\beta\right|^3 + \left|\beta\right|^2 < \delta^2. \end{align*} Bu şu anlama gelir $$0 < \left|\beta\right|^2(\left|\beta\right| + 1) < \delta^2,$$ ve kesinlikle sahibiz $$\left|\beta\right|^2 \leq \left|\beta\right|^2(\left|\beta\right| + 1).$$ Bütün bunları bir araya getirdiğimizde şunu buluruz eğer $0 < \left|(\alpha,\beta)\right| < \epsilon^2,$ o zaman bizde var $$ \left|\beta\right|^2 < \epsilon^4. $$ İkisinden beri $\left|\beta\right|$ ve $\epsilon$ olumlu, biz şu sonuca varıyoruz $$\left|\beta\right| < \epsilon^2.$$

Böylece, \begin{align*} \left|\frac\alpha\beta\right|^2 &=\frac{\left|\alpha\right|^2}{\left|\beta\right|^2} \\ &= \frac{\left|\beta\right|^3}{\left|\beta\right|^2}\\ &=\left|\beta\right|\\ &<\epsilon^2. \end{align*}Karekök alarak istediğimiz sonucu elde ederiz. Vay be! QED

Açıklama 1: Cebirsel olarak kapalı alanlar üzerinde daha kolay örnekler elde edebilirsiniz: örneğin,$k = \Bbb{Q}.$ Sonra $V(x^2 + 1) = V(x^2 - 2) = \emptyset$ alt kümeleri olarak $\Bbb{Q}^2,$ fakat $$\Bbb{Q}[x]/(x^2 + 1)\cong\Bbb{Q}[i]\not\cong\Bbb{Q}[\sqrt{2}]\cong\Bbb{Q}[x]/(x^2 - 2).$$

Açıklama 2: Cevap aynı zamanda genel alanlar üzerinde değildir$k$ ne zaman $k^n$ Zariski topolojisi verilir, ancak bunu görmek daha da kolaydır: $V(x)$ ve $V(x^2 - y^3)$indirgenemez afin eğrilerdir ve bu nedenle eş-sonlu topolojiye sahiptir. Tabii ki, homeomorfizmler gerçekten cebirsel geometri yaparken dikkate almak istediğimiz şey değildir ( tartışma için buraya bakınız ).

Açıklama 3: Son olarak, birlikte çalıştığımızda cevap da hayır$\operatorname{Spec}R[x_1,\dots, x_n]$ onun yerine $R^n.$ Daha genel olarak, eğer doğru değildir $Z_1$ ve $Z_2$ homeomorfik kapalı alt uzaylar $\operatorname{Spec}R,$ ve bunları azaltılmış alt şemalar olarak görüyoruz, $\mathcal{O}_{Z_1}(Z_1)\cong\mathcal{O}_{Z_2}(Z_2).$ Doğrusu bırak $R = k\times k'$iki izomorfik olmayan alanın ürünü olabilir. Sonra$\operatorname{Spec}R = \{0\times k',k\times 0\},$ ve eğer $Z_1 = \{0\times k'\}$ ve $Z_2 = \{k\times 0\},$ her ikisi de basitçe noktadır, ancak varsayım gereği, $\mathcal{O}_{Z_1}(Z_1) = k\not\cong k' = \mathcal{O}_{Z_2}(Z_2).$

Başka bir örnek de $R = \Bbb{R}[x],$ ile $I = (x)$ ve $J = (x^2 + 1)$. $V(x)$ ve $V(x^2 + 1)$ her ikisi de içeride $\operatorname{Spec}R,$ fakat $\Bbb{R}[x]/(x)\cong\Bbb{R}\not\cong\Bbb{C}\cong\Bbb{R}[x]/(x^2 + 1).$

3 OsamaGhani Aug 19 2020 at 06:37

Şart değil. İdealleri düşünün$(x)$ ve $(x^2)$ içinde $\mathbb{C}[x]$. Açıkça halkalar gibi$\mathbb{C}[x]/(x) \ncong \mathbb{C}[x]/(x^2)$. Nullstellensatz'ı gördüyseniz, şunu unutmayın:$(x^2)$ radikal bir ideal değildir ve bu $\sqrt{(x^2)} = (x)$ Böylece $V(x^2) = V(x) = 0$. Bu örnek, bence başka herhangi bir alan için çalışmalıdır.

Düzenleme: Yine, cevap aptalca bir nedenden ötürü hayırdır (ve yine genellikle düşünmediğinize itiraz edebilirsiniz.$(1)$, ancak ilk olarak Zariski topolojisinin tanımlanması zorunludur). Buna cevap vereceğim$\mathbb{R}$. İdeal olanı düşünürsen$(x^2+1)$ ve ideal $(1)$, sonra $V(x^2+1) = V(1) = \phi$. Fakat$\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$ buna karşılık $\mathbb{R}[x]/(1) \cong 0$.

Maalesef doğru $(1)$ asal değil.