Pontuação cruzada muito baixa para regressão com grande .corr () entre recurso e resultado

Aug 18 2020

Estou tentando fazer uma regressão com sklearn entre um recurso e um resultado. Este é o conjunto de dados que tenho:

       bruto  ukupno gradjevinski din
0    2494.98                857951.27
1    2912.60                694473.11
2    3397.50               1310529.72
3    2678.00                199688.14
4    4310.00               1377366.95
5    2086.28                569312.33
6    3061.80                660803.42
7    4095.00               1187732.61
8    3997.00               1304793.08
9    6503.88               1659629.13
10   6732.00               1264178.31
11    940.10                172497.94
12   1543.00                598772.40
13   5903.85                809681.19
14   2861.61                333983.85
15   3682.76               1430771.50
16   2802.00               1145812.21
17   3032.00                356840.54
18   2635.00                543912.80
19   3749.00               1004940.27
20   4300.50               1889560.55
21   9722.00               2137376.95
22   3823.33                891633.50
23   1648.21                335115.40
24  24575.00              19273129.14
25   3926.00               1223803.28
26   3228.00                874000.00
27   4062.00               1090000.00
28   1316.24                332718.54
29   2497.99                519398.70
30  12123.94               2504783.69
31   2057.50                957042.37
32   2495.00                857951.27
33   3770.73               1743978.85
34    864.00                251269.48
35    774.71                192487.26

Encontrei a correlação entre o recurso e o resultado com .corr ():

                            bruto  ukupno gradjevinski din
bruto                    1.000000                 0.878914
ukupno gradjevinski din  0.878914                 1.000000

Eu tenho corr de 0,87 e acho que é muito decente para a regressão, mas quando faço o modelo de regressão e quando obtenho a pontuação cross-val, obtenho um valor para a pontuação cross-val que é negativo e maior do que 1 (às vezes -50,23) e isso é muito estranho para mim. Eu tentei com muitos modelos diferentes e com diferentes números de dobras, mas os resultados são os mesmos. Este é o código para regressão:

features = df[['bruto']]
results = df[['ukupno gradjevinski din']]

regressors = [["Linear Regression", LinearRegression(normalize=False)],
              ["Lasso Regression", Lasso(normalize=False)],
              ["Gaussian Process Regressor", GaussianProcessRegressor()],              
              ["SVR linear", SVR(kernel = 'linear', gamma='scale', max_iter = 1500)],
              ["SVR poly 2", SVR(kernel = 'poly', degree=2, gamma='scale', max_iter = 1500)],
              ["SVR poly 3", SVR(kernel = 'poly', degree=3, gamma='scale', max_iter = 1500)],
              ["SVR poly 4", SVR(kernel = 'poly', degree=4, gamma='scale', max_iter = 1500)],
              ["SVR poly 5", SVR(kernel = 'poly', degree=5, gamma='scale', max_iter = 1500)],
              ["SVR rbf C=0.01", SVR(kernel = 'rbf', C=0.01, gamma='scale', max_iter = 1500)],              
              ["SVR rbf C=0.1", SVR(kernel = 'rbf', C=0.1, gamma='scale', max_iter = 1500)],
              ["SVR rbf C=0.5", SVR(kernel = 'rbf', C=0.5, gamma='scale', max_iter = 1500)],
              ["SVR rbf C=1", SVR(kernel = 'rbf', C=1, gamma='scale', max_iter = 1500)],              
              ["SVR rbf C=10", SVR(kernel = 'rbf', C=10.0, gamma='scale', max_iter = 1500)],
              ["SVR rbf C=20", SVR(kernel = 'rbf', C=20.0, gamma='scale', max_iter = 1500)],
              ["SVR rbf C=50", SVR(kernel = 'rbf', C=50.0, gamma='scale', max_iter = 1500)],              
              ["SVR sigmoid", SVR(kernel = 'sigmoid', gamma='scale', max_iter = 1500)],
              ["GradientBoostingRegressor", GradientBoostingRegressor()],
              ["RandomForestRegressor", RandomForestRegressor(n_estimators = 150)],
              ["DecisionTreeRegressor", DecisionTreeRegressor(max_depth=10)],
              ["Bagging Regressor TREE", BaggingRegressor(base_estimator = DecisionTreeRegressor(max_depth=15))],
              ["Bagging Regressor FOREST", BaggingRegressor(base_estimator = RandomForestRegressor(n_estimators = 100))],
              ["Bagging Regressor linear", BaggingRegressor(base_estimator = LinearRegression(normalize=True))],
              ["Bagging Regressor lasso", BaggingRegressor(base_estimator = Lasso(normalize=True))],
              ["Bagging Regressor SVR rbf", BaggingRegressor(base_estimator = SVR(kernel = 'rbf', C=10.0, gamma='scale'))],
              ["Extra Trees Regressor", ExtraTreesRegressor(n_estimators = 150)],
              ["K-Neighbors Regressor 1", KNeighborsRegressor(n_neighbors=1)],
              ["K-Neighbors Regressor 2", KNeighborsRegressor(n_neighbors=2)],
              ["K-Neighbors Regressor 3", KNeighborsRegressor(n_neighbors=3)],
              ["AdaBoostRegressor", AdaBoostRegressor(base_estimator=None)],
              ["AdaBoostRegressor tree", AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=15))],
              ["AdaBoostRegressor forest", AdaBoostRegressor(base_estimator=RandomForestRegressor(n_estimators = 100))],
              ["AdaBoostRegressor lin reg", AdaBoostRegressor(base_estimator=LinearRegression(normalize=True))],
              ["AdaBoostRegressor lasso", AdaBoostRegressor(base_estimator = Lasso(normalize=True))]]


for reg in regressors:

     try:

           scores = cross_val_score(reg[1], features, results, cv=5)
           scores = np.average(scores)
           print('cross val score', scores)
           print()

     except:
          continue

Tentei dimensionar meus recursos com Normalizer, StandardScaler e MinMaxScaler, mas os resultados são os mesmos. Qualquer ajuda?

Respostas

1 Yahya Aug 18 2020 at 06:41

Eu estava prestes a postar minha resposta em outro fórum, mas ela migrou para aqui.

Existem algumas coisas cruciais que você deve ter em mente:

  1. Não é quem tem o melhor algoritmo que vence. É quem tem mais dados. (Banko e Brill, 2001)

Bank e Brill em 2001 fizeram uma comparação entre 4 algoritmos diferentes, eles continuaram aumentando o tamanho do conjunto de treinamento para milhões e chegaram à conclusão acima citada. E seus dados são muito poucos !

  1. Sempre que você falar sobre Modelos Lineares, lembre-se de seu inimigo - Os Outliers . Se você plotar seus dados, poderá ver isso claramente.

  1. cross_val_scoreretorna o R ^ 2 por padrão para quase qualquer modelo linear (ou seja, regressor). O melhor valor desta métrica = 1 (ou seja, ajuste total), ou = 0 (ou seja, linha horizontal), ou pode ser negativo (ou seja, pior do que uma linha horizontal). Mais informações aqui . A seguir, no experimento que conduzi, você verá como os resultados são válidos.

  2. Um modelo alternativo seria o Multi-layer Perceptron Regressor; com número de camadas = 3, o modelo mapearia qualquer função complicada.

  3. A validação cruzada serviria melhor se você tivesse dados suficientes. No entanto, no seu caso, as pontuações do CV variam visivelmente.

Por favor, pondere os resultados do seguinte experimento autoexplicativo:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
from sklearn.neural_network import MLPRegressor
from scipy.stats import pearsonr
import numpy as np
import matplotlib.pyplot as plt

X = np.array([2494.98,2912.6,3397.5,2678,4310,2086.28,3061.8,4095,3997,
              6503.88,6732,940.1,1543,5903.85,2861.61,3682.76,2802,3032,
              2635,3749,4300.5,9722,3823.33,1648.21,24575,3926,3228,4062,1316.24,
              2497.99,12123.94,2057.5,2495,3770.73,864,774.71]).reshape(-1, 1)

y = np.array([857951.27,694473.11,1310529.72,199688.14,1377366.95,569312.33,660803.42,1187732.61,
          1304793.08,1659629.13,1264178.31,172497.94,598772.4,809681.19,333983.85,1430771.5,1145812.21,
          356840.54,543912.8,1004940.27,1889560.55,2137376.95,891633.5,335115.4,19273129.14,1223803.28,
          874000,1090000,332718.54,519398.7,2504783.69,957042.37,857951.27,1743978.85,251269.48,192487.26])

X_, y_ = zip(*sorted(zip(X, y)))
plt.plot(X_, y_, '-x')
plt.title("Plot of Dataset")
plt.show()

print("Linear Regression :: Before Removing An Outlier")
reg = LinearRegression()
print(np.average(cross_val_score(reg, X, y, cv=3)))

X, y = X_[:-1], y_[:-1]
plt.plot(X, y, '-x')
plt.title("Plot of Dataset After Removing Outlier")
plt.show()

print("Linear Regression :: After Removing An Outlier")
reg = LinearRegression()
print(np.average(cross_val_score(reg, np.array(X).reshape(-1, 1), y, cv=3)))

print("Multi-layer Perceptron Regressor :: The Effect of Mapping Complicated / Non-Linear Function")
mlp = MLPRegressor(hidden_layer_sizes=(16, 16, 16), random_state=2020, activation='identity', max_iter=1000)
print(np.average(cross_val_score(mlp, np.array(X).reshape(-1, 1), y, cv=3)))

RESULTADOS

Isso após a remoção de apenas um valor extremo ( sem exploração adicional e sem fazer nenhum trabalho extravagante, como utilizar qualquer detector de outliers ). Como você pode ver, não haveria uma única linha que se encaixasse em todos os pontos.

Linear Regression :: Before Removing An Outlier
Average CVs Score: -1.7085612243433703

Linear Regression :: After Removing An Outlier
Average CVs Score: -0.12386365189238795

Multi-layer Perceptron Regressor :: The Effect of Mapping Complicated / Non-Linear Function
Average CVs Score: 0.16131374234257037