Por que não consigo calcular essa integral definida bivariada?

Aug 16 2020

Quero usar diretamente a função x para encontrar o valor exato da seguinte integral definida bivariada:

reg = ImplicitRegion[x^2 + y^2 <= 1 && x >= 0, {x, y}];
(* the answer should be π/2*Log[2] *)
Integrate[(1 + x*y)/(1 + x^2 + y^2), Element[{x, y}, reg]]

Essa integral bivariada não é complicada, mas a fórmula acima retorna como está. Eu quero saber onde está o problema e como devo modificá-lo.

NIntegrate[(1 + x*y)/(1 + x^2 + y^2), Element[{x, y}, reg]]
(*1.08879304515*)

Respostas

8 cvgmt Aug 16 2020 at 11:03
Integrate[(1 + x*y)/(1 + x^2 + y^2), {x, y} ∈ Disk[{0, 0}, 1, {-π/2, π/2}]]
7 J.M.'stechnicaldifficulties Aug 16 2020 at 10:56

Pode-se apenas usar uma especificação de região alternativa:

reg = RegionIntersection[Disk[], HalfPlane[{0, 0}, {0, 1}, {1, 0}]];
Integrate[(1 + x y)/(1 + x^2 + y^2), {x, y} ∈ reg]
   1/2 π Log[2]

ou mude para coordenadas polares:

Simplify[((1 + x y)/(1 + x^2 + y^2) /. Thread[{x, y} -> r AngleVector[θ]])
         Det[D[r AngleVector[θ], {{r, θ}}]]]
   (r + r^3 Cos[θ] Sin[θ])/(1 + r^2)

Integrate[(r + r^3 Cos[θ] Sin[θ])/(1 + r^2), {r, 0, 1}, {θ, -π/2, π/2}]
   1/2 π Log[2]