Como calcular $\int_0^\infty \frac{\cos(ax)}{(1+x^2)\sqrt{x}}dx$.

Nov 25 2020

$$ \mbox{How can I compute}\ \int_{0}^{\infty}\frac{\cos\left(ax\right)}{\left(1 + x^{2}\right)\,\sqrt{\,{x}\,}}\,\mathrm{d}x\ ?. $$

Eu vi muitas perguntas sobre cálculos dessa integral sem o termo $\,\sqrt{\,{x}\,}\,$ e que pode ser resolvido usando várias técnicas (integral de contorno, integral iterada, etc.$\ldots$) Mas como posso calcular minha integral$?$.

Respostas

4 SewerKeeper Nov 25 2020 at 18:56

Deixei $$ f(a) = \int_0^{+\infty} \frac{\cos(ax)}{(1+x^2)\sqrt{x}} \, \mathrm{d} x, $$


Primeiro, notamos que $f(a)=f(-a)$, conseqüentemente $f$ é uniforme e vamos nos concentrar apenas em $a \ge 0$.

Segundo, $$ \begin{split} \left| f(a) \right| &\le \left|\int_0^{+\infty} \frac{\cos(ax)}{(1+x^2)\sqrt{x}} \, \mathrm{d} x \right|\\ &\le \int_0^{+\infty} \frac{\left|\cos(ax)\right|}{(1+x^2)\sqrt{x}} \, \mathrm{d} x \\ &\le \int_0^{+\infty} \frac{\mathrm{d} x}{(1+x^2)\sqrt{x}} = f(0) \end{split}$$

Com alguma matemática, descobre-se que $$ f(0) = \int_0^{+\infty} \frac{\mathrm{d} x}{(1+x^2)\sqrt{x}} =2\int_0^{+\infty} \frac{\mathrm dt}{1+t^4} = \frac{\pi}{\sqrt{2}} \approx 2.22 $$

(veja aqui )


Agora, se diferenciarmos twitce sob o símbolo integral (podemos fazer isso por causa da regra da integral de Leibniz )$$ \begin{split} f''(a) &= -\int_0^{+\infty} \frac{\cos(ax) \cdot x^2}{(1+x^2)\sqrt{x}} \, \mathrm{d} x\\ &= -\int_0^{+\infty} \frac{\cos(ax) \left(x^2+1-1\right)}{(1+x^2)\sqrt{x}} \, \mathrm{d} x\\ &= - \left[\int_0^{+\infty} \frac{\cos(ax)}{\sqrt{x}} \, \mathrm{d} x -\int_0^{+\infty} \frac{\cos(ax) }{(1+x^2)\sqrt{x}} \, \mathrm{d} x \right] \\ &= f(a) - \int_0^{+\infty} \frac{\cos(ax)}{\sqrt{x}} \, \mathrm{d} x \end{split}$$

Agora,

$$ \begin{split} \int_0^{+\infty} \frac{\cos(ax)}{\sqrt{x}} \, \mathrm{d} x &= \frac{1}{2}\int_\mathbb{R}\frac{\cos(ax)}{\sqrt{|x|}} \, \mathrm{d} x \\ &= \mathcal F \left(\frac{1}{\sqrt{|x|}}\right)(a) \\ &=\frac{1}{2} \sqrt{\frac{2\pi}{|a|}}\\ &= \sqrt{\frac{\pi}{2}}\sqrt{\frac{1}{|a|}} \end{split} $$ onde usamos $ \mathcal F \left(\frac{1}{\sqrt{|x|}}\right)(a) = \frac{1}{2} \sqrt{\frac{2\pi}{|a|}}$(ver transformada de Fourier de$\frac{1}{\sqrt{|x|}}$)


Então, o problema agora é resolver

$$ \begin{cases} f''(a) -f(a) = -\sqrt{\frac{\pi}{2}}\sqrt{\frac{1}{|a|}}\\ f(0) = \frac{\pi}{\sqrt 2}\\ \end{cases} $$

A partir de equações diferenciais lineares, sabemos que uma solução é

$$ f(a) = c_1 \mathrm{e}^a + c_2 \mathrm{e}^{-a} + f_\mathrm p(a) $$

Onde $c_1$ e $c_2$ são números reais e $f_\mathrm p$ é a solução complementar.

Wolfram Alpha nos ajuda a saber que

$$ \begin{split} f(a) &= c_1 \mathrm{e}^a + c_2 \mathrm{e}^{-a} + \sqrt{\frac{\pi}{2}}\int_0^{a} \frac{\mathrm{e}^{-x+a}-\mathrm{e}^{x-a}}{2\sqrt{x}}\, \mathrm d x\\ &= c_1 \mathrm{e}^a + c_2 \mathrm{e}^{-a} + \sqrt{\frac{\pi}{2}}\int_0^{a} \frac{\sinh(a-x)}{\sqrt{x}}\, \mathrm d x \end{split} $$

Agora, se adicionarmos a condição inicial, obtemos $$ c_1+c_2 = \frac{\pi}{\sqrt 2}, $$ portanto, após renomear a constante $c_1 = C$, a solução é

$$ \begin{split} f(a)&= C \mathrm{e}^a + \left(\frac{\pi}{\sqrt 2} - C\right) \mathrm{e}^{-a} + \sqrt{\frac{\pi}{2}}\int_0^{a} \frac{\sinh(a-x)}{\sqrt{x}}\, \mathrm d x\\ &= 2C \sinh(a) + \frac{\pi}{\sqrt 2} \mathrm{e}^{-a} + \sqrt{\frac{\pi}{2}}\int_0^{a} \frac{\sinh(a-x)}{\sqrt{x}}\, \mathrm d x \end{split} $$

Se você encontrar algum outro valor inicial (por exemplo $f(1)$), então você pode eliminar a constante $C$ também.