Ana bileşenleri kullanarak puan grafiği oluşturma

Aug 18 2020

İlk iki temel bileşenin skor grafiklerini oluşturmaya çalışıyorum. Verileri temel alan üç veri çerçevesine ayırarak başlıyorum class. Daha sonra verileri dönüştürüp PCA gerçekleştiriyorum.

Verilerim aşağıdaki gibidir:

14      1   82.0 12.80   7.60   1070   105   400
14      1   82.0 11.00   9.00    830   145   402
14      1  223.6 17.90  10.35   2200   135   500
15      1  164.0 14.50   9.80   1946   138   500
15      1  119.0 12.90   7.90   1190   140   400
15      1   74.5  7.50   6.30    653   177   350
15      1   74.5 11.13   8.28    930   113   402
16      1  279.5 14.30   9.40   1575   230   700
16      1   82.0  7.80   6.70    676   175   525
16      1   67.0 11.00   8.30    920   106   300
16      2  112.0 11.70   8.00   1353   140   560
16      2  149.0 12.80   8.70   1550   170   550
16      2  119.0  8.50   7.40    888   175   250
16      2  119.0 13.30   9.60   1275   157   450
16      2  238.5 14.90   8.90   1537   183   700
16      2  205.0 12.00   7.90   1292   201   600
16      2   82.0  9.40   6.20    611   209   175
16      2  119.0 15.95  10.25   1350   145   450
16      2  194.0 16.74  10.77   1700   120   450
17      2  336.0 22.20  10.90   3312   135   450
17      3  558.9 23.40  12.60   4920   152   600
17      3  287.0 14.30   9.40   1510   176   800
17      3  388.0 23.72  11.86   3625   140   500
17      3  164.0 11.90   9.80    900   190   600
17      3  194.0 14.40   9.20   1665   175   600
17      3  194.0 14.40   8.90   1640   175   600
17      3  186.3  9.70   8.00   1081   205   600
17      3  119.0  8.00   6.50    625   196   400
17      3  119.0  9.40   6.95    932   165   250
17      3   89.4 14.55   9.83   1378   146   400

Sütun 1:, typeSütun 2:, classSütun 3:, v1Sütun 4:, v2Sütun 5:, v3Sütun 6:, v4Sütun 7:, v5Sütun 8:v6

Kodum aşağıdaki gibidir:

data <- read.csv("data.csv")
result <- split(data, data$class);

data1 <- result[[1]][,3:8];
data1Logged <- log10(data1)
pca.data1Logged = prcomp( ~ v1 + 
                         v2 + 
                         v3 + 
                         v4 + 
                         v5 + 
                         v6, 
                       data = data1Logged, scale. = FALSE );

data2 <- result[[2]][,3:8];
data2Logged <- log10(data2)
pca.data2Logged = prcomp( ~ v1 + 
                         v2 + 
                         v3 + 
                         v4 + 
                         v5 + 
                         v6, 
                       data = data2Logged, scale. = FALSE );

data3 <- result[[3]][,3:8];
data3Logged <- log10(data3)
pca.data3Logged = prcomp( ~ v1 + 
                         v2 + 
                         v3 + 
                         v4 + 
                         v5 + 
                         v6, 
                       data = data3Logged, scale. = FALSE );

Üçünün her biri için class, PC1 ve PC2 için bir skor grafiğine sahip olmak istiyorum:

pca.data1Logged$x[,1:2]
pca.data2Logged$x[,1:2] pca.data3Logged$x[,1:2]

Bulabildiğim en iyi şey bu:

opar <- par(mfrow = c(1,3))
plot(pca.data1Logged$x[,1:2]) plot(pca.data2Logged$x[,1:2])
plot(pca.data3Logged$x[,1:2])
par(opar)

Ancak bu arsanın ölçeklendirilmesini, renklendirilmesini, üst üste bindirilmesini vb. İstiyorum. Ggplot hakkında okumaya başladım, ancak bunu yapacak deneyime sahip değilim. Aşağıdakine benzer bir şey istiyorum:

https://cran.r-project.org/web/packages/ggfortify/vignettes/plot_pca.html

Yukarıdakilerle ilgili sorun, verileri 3 ayrı veri çerçevesine böldüm, bu nedenle "sınıf1", "sınıf2," sınıf3 "için başlık yok.

Yanıtlar

3 BappaDas Aug 18 2020 at 12:51

Kullanabilir factoextrave FactoMineRbeğenebilirsin

library("factoextra")
library("FactoMineR")

#PCA analysis
df.pca <- PCA(df[,-c(1,2)], graph = T)
# Visualize
# Use habillage to specify groups for coloring
fviz_pca_ind(df.pca,
             label = "none", # hide individual labels
             habillage = as.factor(df$class), # color by groups
             palette = c("#00AFBB", "#E7B800", "#FC4E07"),
             addEllipses = TRUE # Concentration ellipses, legend.title = "Class")

Dim1 ve 2'yi manuel olarak PC1 ve 2 olarak değiştirebilirsiniz. Bunun için, bu grafikten "Dim1 (% 63.9)" ve "Dim2 (% 23.3)" değerini not edebilir ve Dim1 ve 2'yi PC1 ve 2'ye dönüştürmek için aşağıdaki kodu kullanabilirsiniz.

fviz_pca_ind(df.pca,
             label = "none", # hide individual labels
             habillage = as.factor(df$class), # color by groups
             palette = c("#00AFBB", "#E7B800", "#FC4E07"),
             addEllipses = TRUE, # Concentration ellipses
             xlab = "PC1 (63.9%)", ylab = "PC2 (23.3%)", legend.title = "Class")

Günlüğe kaydetmek istiyorsanız verileri dönüştürün, o zaman kullanabilirsiniz

df[,3:8] <- log10(df[,3:8]) 

df.pca <- PCA(df, graph = T)

fviz_pca_ind(df.pca,
             label = "none", # hide individual labels
             habillage = as.factor(df$class), # color by groups
             palette = c("#00AFBB", "#E7B800", "#FC4E07"),
             addEllipses = TRUE, # Concentration ellipses
legend.title = "Class")

Dim1 ve 2'yi manuel olarak PC1 ve 2'ye değiştirmek için aşağıdaki kodu kullanabilirsiniz

fviz_pca_ind(df.pca,
             label = "none", # hide individual labels
             habillage = as.factor(df$class), # color by groups
             palette = c("#00AFBB", "#E7B800", "#FC4E07"),
             addEllipses = TRUE, # Concentration ellipses
             xlab = "PC1 (64.9%)", ylab = "PC2 (22.6%)", legend.title = "Class")

Veri

df =
structure(list(Type = c(14L, 14L, 14L, 15L, 15L, 15L, 15L, 16L, 
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L, 17L, 
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L), class = c(1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), v1 = c(82, 82, 
223.6, 164, 119, 74.5, 74.5, 279.5, 82, 67, 112, 149, 119, 119, 
238.5, 205, 82, 119, 194, 336, 558.9, 287, 388, 164, 194, 194, 
186.3, 119, 119, 89.4), v2 = c(12.8, 11, 17.9, 14.5, 12.9, 7.5, 
11.13, 14.3, 7.8, 11, 11.7, 12.8, 8.5, 13.3, 14.9, 12, 9.4, 15.95, 
16.74, 22.2, 23.4, 14.3, 23.72, 11.9, 14.4, 14.4, 9.7, 8, 9.4, 
14.55), v3 = c(7.6, 9, 10.35, 9.8, 7.9, 6.3, 8.28, 9.4, 6.7, 
8.3, 8, 8.7, 7.4, 9.6, 8.9, 7.9, 6.2, 10.25, 10.77, 10.9, 12.6, 
9.4, 11.86, 9.8, 9.2, 8.9, 8, 6.5, 6.95, 9.83), v4 = c(1070L, 
830L, 2200L, 1946L, 1190L, 653L, 930L, 1575L, 676L, 920L, 1353L, 
1550L, 888L, 1275L, 1537L, 1292L, 611L, 1350L, 1700L, 3312L, 
4920L, 1510L, 3625L, 900L, 1665L, 1640L, 1081L, 625L, 932L, 1378L
), v5 = c(105L, 145L, 135L, 138L, 140L, 177L, 113L, 230L, 175L, 
106L, 140L, 170L, 175L, 157L, 183L, 201L, 209L, 145L, 120L, 135L, 
152L, 176L, 140L, 190L, 175L, 175L, 205L, 196L, 165L, 146L), 
    v6 = c(400L, 402L, 500L, 500L, 400L, 350L, 402L, 700L, 525L, 
    300L, 560L, 550L, 250L, 450L, 700L, 600L, 175L, 450L, 450L, 
    450L, 600L, 800L, 500L, 600L, 600L, 600L, 600L, 400L, 250L, 
    400L)), class = "data.frame", row.names = c(NA, -30L))
2 jay.sf Aug 18 2020 at 12:53

Ayrı sonuçları ciltleyebilir ve içinde kullandığınız bir renk sütunu ekleyebilirsiniz plot.

rb <- rbind(cbind(pca.data1Logged$x[,1:2], d=2), cbind(pca.data2Logged$x[,1:2], d=3),
            cbind(pca.data3Logged$x[,1:2], d=4))

plot(rb, col=rb[,"d"], pch=20, main="PCA Plot")
legend("bottomleft", paste("data", 1:3), col=2:4, pch=20)


Veri:

data <- read.table(header=F, text="14      1   82.0 12.80   7.60   1070   105   400
14      1   82.0 11.00   9.00    830   145   402
14      1  223.6 17.90  10.35   2200   135   500
15      1  164.0 14.50   9.80   1946   138   500
15      1  119.0 12.90   7.90   1190   140   400
15      1   74.5  7.50   6.30    653   177   350
15      1   74.5 11.13   8.28    930   113   402
16      1  279.5 14.30   9.40   1575   230   700
16      1   82.0  7.80   6.70    676   175   525
16      1   67.0 11.00   8.30    920   106   300
16      2  112.0 11.70   8.00   1353   140   560
16      2  149.0 12.80   8.70   1550   170   550
16      2  119.0  8.50   7.40    888   175   250
16      2  119.0 13.30   9.60   1275   157   450
16      2  238.5 14.90   8.90   1537   183   700
16      2  205.0 12.00   7.90   1292   201   600
16      2   82.0  9.40   6.20    611   209   175
16      2  119.0 15.95  10.25   1350   145   450
16      2  194.0 16.74  10.77   1700   120   450
17      2  336.0 22.20  10.90   3312   135   450
17      3  558.9 23.40  12.60   4920   152   600
17      3  287.0 14.30   9.40   1510   176   800
17      3  388.0 23.72  11.86   3625   140   500
17      3  164.0 11.90   9.80    900   190   600
17      3  194.0 14.40   9.20   1665   175   600
17      3  194.0 14.40   8.90   1640   175   600
17      3  186.3  9.70   8.00   1081   205   600
17      3  119.0  8.00   6.50    625   196   400
17      3  119.0  9.40   6.95    932   165   250
17      3   89.4 14.55   9.83   1378   146   400")

names(data) <- c("sth", "class", paste0("v", 1:6))